1.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
2.Influence of iron metabolism on osteoporosis and modulating effect of traditional Chinese medicine.
Yi-Li ZHANG ; Bao-Yu QI ; Chuan-Rui SUN ; Xiang-Yun GUO ; Shuang-Jie YANG ; Ping LIU ; Xu WEI
China Journal of Chinese Materia Medica 2025;50(3):575-582
Recent studies have shown that an imbalance in iron metabolism can affect the composition and microstructural changes of bone, disrupting bone homeostasis and leading to osteoporosis(OP). The imbalance in iron metabolism, along with its induced local abnormal microenvironment and cellular iron death, has become a new focal point in OP research, drawing increasing attention from the academic community regarding the regulation of iron metabolism to prevent and manage OP. From the perspective of traditional Chinese medicine(TCM), iron metabolism imbalance has potential connections to TCM theories regarding internal organs, as well as treatments aimed at tonifying the kidney, strengthening the spleen, and activating blood circulation. Evidence is continually emerging that TCMs and effective components that tonify the kidney, strengthen the spleen, and activate blood circulation can prevent and manage OP by regulating iron metabolism. This article analyzes the relationship between iron and bone, as well as the effects of TCM formulations on improving iron metabolism and influencing bone metabolism, from the perspectives of iron metabolism mechanisms and TCM interventions, aiming to broaden existing clinical strategies for prevention and treatment and inject new momentum into the field of OP as it moves into a new era.
Osteoporosis/drug therapy*
;
Humans
;
Iron/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Medicine, Chinese Traditional
;
Bone and Bones/drug effects*
3.4'-O-methylbavachalcone improves vascular cognitive impairment by inhibiting neuroinflammation via EPO/Nrf2/HO-1 pathway.
Xin-Yuan ZHANG ; Chen WANG ; Hong-Qing CHEN ; Xiang-Bing ZENG ; Jun-Jie WANG ; Qing-Guang ZHANG ; Jin-Wen XU ; Shuang LING
China Journal of Chinese Materia Medica 2025;50(14):3990-4002
This study aims to explore the effects and mechanisms of 4'-O-methylbavachalcone(MeBavaC), an active compound from Psoraleae Fructus, in regulating white matter neuroinflammation to improve vascular cognitive impairment. Male Sprague-Dawley(SD) rats were randomly divided into four groups: sham group, model group, high-dose MeBavaC group(14 mg·kg~(-1)), and low-dose MeBavaC group(7 mg·kg~(-1)). The rat model of chronic cerebral hypoperfusion(CCH) was established using bilateral common carotid artery occlusion. The Morris water maze test was performed to evaluate the learning and memory abilities of the rats. Luxol fast blue staining, Nissl staining, immunofluorescence, immunohistochemistry, and transmission electron microscopy were utilized to observe the morphology and ultrastructure of the white matter myelin sheaths, axon integrity, the morphology and number of hippocampal neurons, and the loss and activation of glial cells in the white matter. Transcriptome analysis was performed to explore the potential mechanisms of white matter injury induced by CCH. Western blot and quantitative real-time polymerase chain reaction(qRT-PCR) assays were conducted to measure the expression levels of NOD-like receptor protein 3(NLRP3), absent in melanoma 2(AIM2), gasdermin D(GSDMD), cysteinyl aspartate-specific proteinase-1(caspase-1), interleukin-18(IL-18), interleukin-1β(IL-1β), erythropoietin(EPO), nuclear factor erythroid 2-related factor 2(Nrf2), and heme oxygenase-1(HO-1) in the white matter of rats. The results showed that compared with the model group, MeBavaC significantly improved the learning and memory abilities of rats with CCH, improved the damage of white matter myelin sheath, maintained axonal integrity, reduced the loss of hippocampal neurons and oligodendrocytes in the white matter, inhibited the activation of microglia and the proliferation of astrocytes in the white matter, and suppressed the NLRP3/AIM2/caspase-1/GSDMD pathway. The expression levels of inflammatory cytokines IL-1β and IL-18 were significantly reduced, while EPO expression and the expression of Nrf2/HO-1 antioxidant pathway were notably elevated. In conclusion, MeBavaC can alleviate cognitive impairment in rats with CCH and suppress neuroinflammation in cerebral white matter. The mechanism of action may involve activation of EPO activity, promotion of endogenous antioxidant pathways, and inhibition of neuroinflammation in the white matter. This study suggests that MeBavaC exhibits antioxidant and anti-neuroinflammatory effects, showing potential application in improving cognitive dysfunction.
Animals
;
Male
;
Rats, Sprague-Dawley
;
NF-E2-Related Factor 2/immunology*
;
Rats
;
Chalcones/administration & dosage*
;
Cognitive Dysfunction/metabolism*
;
Signal Transduction/drug effects*
;
Neuroinflammatory Diseases/drug therapy*
;
Heme Oxygenase-1/metabolism*
;
Humans
;
Heme Oxygenase (Decyclizing)/genetics*
4.Mediating effect of sleep duration between depression symptoms and myopia in middle school students.
Wei DU ; Xu-Xiang YANG ; Ru-Shuang ZENG ; Chun-Yao ZHAO ; Zhi-Peng XIANG ; Yuan-Chun LI ; Jie-Song WANG ; Xiao-Hong SU ; Xiao LU ; Yu LI ; Jing WEN ; Dang HAN ; Qun DU ; Jia HE
Chinese Journal of Contemporary Pediatrics 2025;27(3):359-365
OBJECTIVES:
To explore the mediating role of sleep duration in the relationship between depression symptoms and myopia among middle school students.
METHODS:
This study was a cross-sectional research conducted using a stratified cluster random sampling method. A total of 1 728 middle school students were selected from two junior high schools and two senior high schools in certain urban areas and farms of the Xinjiang Production and Construction Corps. Questionnaire surveys and vision tests were conducted among the students. Spearman analysis was used to analyze the correlation between depression symptoms, sleep duration, and myopia. The Bootstrap method was employed to investigate the mediating effect of sleep duration between depression symptoms and myopia.
RESULTS:
The prevalence of myopia in the overall population was 74.02% (1 279/1 728), with an average sleep duration of (7.6±1.0) hours. The rate of insufficient sleep was 83.62% (1 445/1 728), and the proportion of students exhibiting depression symptoms was 25.29% (437/1 728). Correlation analysis showed significant negative correlations between visual acuity in both eyes and sleep duration with depressive emotions as measured by the Center for Epidemiologic Studies Depression Scale (with correlation coefficients of -0.064, -0.084, and -0.199 respectively; P<0.01), as well as with somatic symptoms and activities (with correlation coefficients of -0.104, -0.124, and -0.233 respectively; P<0.01) and interpersonal relationships (with correlation coefficients of -0.052, -0.059, and -0.071 respectively; P<0.05). The correlation coefficients for left and right eye visual acuity and sleep duration were 0.206 and 0.211 respectively (P<0.001). Sleep duration exhibited a mediating effect between depression symptoms and myopia (indirect effect=0.056, 95%CI: 0.029-0.088), with the mediating effect value for females (indirect effect=0.066, 95%CI: 0.024-0.119) being higher than that for males (indirect effect=0.042, 95%CI: 0.011-0.081).
CONCLUSIONS
Sleep duration serves as a partial mediator between depression symptoms and myopia in middle school students.
Humans
;
Myopia/etiology*
;
Male
;
Female
;
Depression/physiopathology*
;
Cross-Sectional Studies
;
Sleep
;
Adolescent
;
Students
;
Child
;
Time Factors
;
Sleep Duration
5.Mechanism of Regulating MK2 to Improve Bone Marrow Inflammatory Damage after Hematopoietic Stem Cell Transplantation.
Zhao-Hui WANG ; Bo LONG ; Yu-Han WANG ; Zhi-Ting LIU ; Zi-Jie XU ; Shuang DING
Journal of Experimental Hematology 2025;33(5):1453-1460
OBJECTIVE:
To investigate the role of MK2 inhibitor MMI-0100 on inflammatory response after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and related mechanisms.
METHODS:
An allo-HSCT mouse model was established. Recipient rats were randomly divided into BMT+NaCl group and BMT+MMI-0100 group, and were injected with NaCl and MMI-0100 every day after transplantation, respectively. Samples of the two groups were collected on d 7 and 14, femur paraffin sections were stained with HE, and pathological changes in the bone marrow cavity were observed under the light microscope. The gene and protein expression levels of pro-inflammatory cytokines IL-1β and IL-18 were detected by qPCR and Western blot. Macrophage typing was detected by flow cytometry. The expression levels of NLRP3 and Caspase-1 were detected by Western blot.
RESULTS:
Inflammatory cell infiltration in the bone marrow cavity was significantly reduced in the BMT+MMI-0100 group. Western blot results showed that the protein expression levels of IL-1β and IL-18 in the BMT+MMI-0100 group were decreased compared to the BMT+NaCl group on day 7 and day 14 (all P <0.01). The qPCR results showed that compared to the BMT+NaCl group, the IL-18 gene expression levels in the BMT+MMI-0100 group were significantly reduced on day 7 and day 14 (both P <0.01). In the BMT+MMI-0100 group, the expression level of IL-1β gene decreased on day 7 (P <0.05), but increased and was higher than that in the BMT+NaCl group on day 14 (P <0.05). Flow cytometry results showed that the expression of M1 macrophages and M1/M2 ratio decreased in the BMT+MMI-0100 group compared to BMT+NaCl group (all P <0.05). Western blot results showed that the protein expression levels of NLRP3 and Caspase-1 in the BMT+MMI-0100 group were lower than those in the BMT+NaCl group (all P <0.05).
CONCLUSION
MMI-0100 can ameliorate bone marrow inflammatory injury after allo-HSCT and may act by reducing NLRP3 expression to promote M2 polarization.
Animals
;
Interleukin-1beta/metabolism*
;
Rats
;
Interleukin-18/metabolism*
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Mice
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Inflammation
;
Bone Marrow/pathology*
;
Protein Serine-Threonine Kinases/metabolism*
;
Intracellular Signaling Peptides and Proteins/antagonists & inhibitors*
;
Caspase 1/metabolism*
;
Macrophages
;
Transplantation, Homologous
6.Molecular mechanism of high-altitude hypoxia-induced lipid metabolism disorder in mouse spleen tissue
Chengling CUI ; Yuzhen XU ; Chaoqun TANG ; Jiaying JIANG ; Ying HU ; Jie SHUANG
Journal of Southern Medical University 2024;44(10):2024-2032
Objective To investigate the molecular mechanism of lipid metabolism disorder in mouse spleen tissues due to high-altitude hypoxia.Methods Ten C57BL/6 male mice were randomly divided into normoxia group(maintained at an altitude of 400 m)and high-altitude hypoxia group(maintained at 4200 m)for 30 days(n=5).Lipidomics and metabolomics analyses of the spleen tissue of the mice were conducted using liquid chromatography-mass spectrometry(LC-MS)to identify the differential metabolites,which were further analyzed by KEGG enrichment and pathway analyses,and the differential genes were screened through transcriptome sequencing.Bioinformatics analysis was conducted to identify the upstream target genes of the differential metabolites in specific metabolic pathways.RT-qPCR and Western blotting were used to detect mRNA expressions of 11β-hydroxysteroid dehydrogenase 1(HSD11B1),steroid 5α reductase 1(SRD5A1),prostaglandin-endoperoxide synthase 1(PTGS1),hematopoietic prostaglandin D synthetase(HPGDS),xanthine dehydrogenase(XDH),purine nucleoside phosphorylase(PNP),hypoxanthine guanine-phosphoribosyltransferase(HPRT)and extracellular 5'-nucleotidase(NT5E)and protein expressions of HSD11B1,SRD5A1,XDH,PNP and HPRT in the mouse spleens.Results We identified a total of 41 differential lipid metabolites in the mouse spleens,and these metabolites and the differential genes were enriched in steroid hormone biosynthesis,arachidonic acid metabolism,and purine metabolism pathways.Compared to the mice kept in normoxic conditions,the mice exposed to high-altitude hypoxia showed significantly upregulated expressions of adrenosterone,androsterone,prostaglandin D2,prostaglandin J2,xanthine,xanthosine,and uric acid in the spleen with also changes in the expression levels of HSD11B1,SRD5A1,PTGS1,HPGDS,XDH,PNP,HPRT,and NT5E.Conclusion High-altitude hypoxia can result in lipid metabolism disorder in mouse spleen tissue by affecting steroid hormone biosynthesis,arachidonic acid metabolism,and purine metabolism pathways.
7.Molecular mechanism of high-altitude hypoxia-induced lipid metabolism disorder in mouse spleen tissue
Chengling CUI ; Yuzhen XU ; Chaoqun TANG ; Jiaying JIANG ; Ying HU ; Jie SHUANG
Journal of Southern Medical University 2024;44(10):2024-2032
Objective To investigate the molecular mechanism of lipid metabolism disorder in mouse spleen tissues due to high-altitude hypoxia.Methods Ten C57BL/6 male mice were randomly divided into normoxia group(maintained at an altitude of 400 m)and high-altitude hypoxia group(maintained at 4200 m)for 30 days(n=5).Lipidomics and metabolomics analyses of the spleen tissue of the mice were conducted using liquid chromatography-mass spectrometry(LC-MS)to identify the differential metabolites,which were further analyzed by KEGG enrichment and pathway analyses,and the differential genes were screened through transcriptome sequencing.Bioinformatics analysis was conducted to identify the upstream target genes of the differential metabolites in specific metabolic pathways.RT-qPCR and Western blotting were used to detect mRNA expressions of 11β-hydroxysteroid dehydrogenase 1(HSD11B1),steroid 5α reductase 1(SRD5A1),prostaglandin-endoperoxide synthase 1(PTGS1),hematopoietic prostaglandin D synthetase(HPGDS),xanthine dehydrogenase(XDH),purine nucleoside phosphorylase(PNP),hypoxanthine guanine-phosphoribosyltransferase(HPRT)and extracellular 5'-nucleotidase(NT5E)and protein expressions of HSD11B1,SRD5A1,XDH,PNP and HPRT in the mouse spleens.Results We identified a total of 41 differential lipid metabolites in the mouse spleens,and these metabolites and the differential genes were enriched in steroid hormone biosynthesis,arachidonic acid metabolism,and purine metabolism pathways.Compared to the mice kept in normoxic conditions,the mice exposed to high-altitude hypoxia showed significantly upregulated expressions of adrenosterone,androsterone,prostaglandin D2,prostaglandin J2,xanthine,xanthosine,and uric acid in the spleen with also changes in the expression levels of HSD11B1,SRD5A1,PTGS1,HPGDS,XDH,PNP,HPRT,and NT5E.Conclusion High-altitude hypoxia can result in lipid metabolism disorder in mouse spleen tissue by affecting steroid hormone biosynthesis,arachidonic acid metabolism,and purine metabolism pathways.
8.TSHR Variant Screening and Phenotype Analysis in 367 Chinese Patients With Congenital Hypothyroidism
Hai-Yang ZHANG ; Feng-Yao WU ; Xue-Song LI ; Ping-Hui TU ; Cao-Xu ZHANG ; Rui-Meng YANG ; Ren-Jie CUI ; Chen-Yang WU ; Ya FANG ; Liu YANG ; Huai-Dong SONG ; Shuang-Xia ZHAO
Annals of Laboratory Medicine 2024;44(4):343-353
Background:
Genetic defects in the human thyroid-stimulating hormone (TSH) receptor (TSHR) gene can cause congenital hypothyroidism (CH). However, the biological functions and comprehensive genotype–phenotype relationships for most TSHR variants associated with CH remain unexplored. We aimed to identify TSHR variants in Chinese patients with CH, analyze the functions of the variants, and explore the relationships between TSHR genotypes and clinical phenotypes.
Methods:
In total, 367 patients with CH were recruited for TSHR variant screening using whole-exome sequencing. The effects of the variants were evaluated by in-silico programs such as SIFT and polyphen2. Furthermore, these variants were transfected into 293T cells to detect their Gs/cyclic AMP and Gq/11 signaling activity.
Results:
Among the 367 patients with CH, 17 TSHR variants, including three novel variants, were identified in 45 patients, and 18 patients carried biallelic TSHR variants. In vitro experiments showed that 10 variants were associated with Gs/cyclic AMP and Gq/11 signaling pathway impairment to varying degrees. Patients with TSHR biallelic variants had lower serum TSH levels and higher free triiodothyronine and thyroxine levels at diagnosis than those with DUOX2 biallelic variants.
Conclusions
We found a high frequency of TSHR variants in Chinese patients with CH (12.3%), and 4.9% of cases were caused by TSHR biallelic variants. Ten variants were identified as loss-of-function variants. The data suggest that the clinical phenotype of CH patients caused by TSHR biallelic variants is relatively mild. Our study expands the TSHR variant spectrum and provides further evidence for the elucidation of the genetic etiology of CH.
9.A retrospective study on the efficacy of Roxadustat in peritoneal dialysis patients with erythropoietin hyporesponsiveness
Jie LIU ; Shuang LI ; Fan YANG ; Tianyu LI ; Rui LI ; Yousuf WAHEED ; Chen MENG ; Shulin LI ; Kun LIU ; Yanshan TONG ; Haisheng XU ; Chuankuo TIAN ; Xinglei ZHOU
The Korean Journal of Internal Medicine 2024;39(3):488-500
Background/Aims:
Roxadustat, an oral medication for treating renal anemia, is a hypoxia-inducible factor prolyl hydroxylase inhibitor used for regulating iron metabolism and promoting erythropoiesis. To investigate the efficacy and safety of roxadustat in patients undergoing peritoneal dialysis (PD) with erythropoietin hyporesponsiveness.
Methods:
Single-center, retrospective study, 81 PD patients (with erythropoietin hyporesponsiveness) were divided into the roxadustat group (n = 61) and erythropoiesis-stimulating agents (ESAs) group (n = 20). Hemoglobin (Hb), total cholesterol, intact parathyroid hormone (iPTH), brain natriuretic peptide (BNP), related indicators of cardiac function and high-sensitivity C-reactive protein (hs-CRP) were collected. Additionally, adverse events were also recorded. The follow-up period was 16 weeks.
Results:
The two groups exhibited similar baseline demographic and clinical characteristics. At baseline, the roxadustat group had a mean Hb level of 89.8 ± 18.9 g/L, while the ESAs group had a mean Hb level of 95.2 ± 16.0 g/L. By week 16, the Hb levels had increased to 118 ± 19.8 g/L (p < 0.05) in the roxadustat group and 101 ± 19.3 g/L (p > 0.05) in the ESAs group. The efficacy of roxadustat in improving anemia was not influenced by baseline levels of hs-CRP and iPTH. Cholesterol was decreased in the roxadustat group without statin use. An increase in left ventricular ejection fraction and stabilization of BNP were observed in the roxadustat group.
Conclusions
For PD patients with erythropoietin hyporesponsiveness, roxadustat can significantly improve renal anemia. The efficacy of roxadustat in improving renal anemia was not affected by baseline levels of hs-CRP0 and iPTH.

Result Analysis
Print
Save
E-mail