1.Expert consensus on neoadjuvant PD-1 inhibitors for locally advanced oral squamous cell carcinoma (2026)
LI Jinsong ; LIAO Guiqing ; LI Longjiang ; ZHANG Chenping ; SHANG Chenping ; ZHANG Jie ; ZHONG Laiping ; LIU Bing ; CHEN Gang ; WEI Jianhua ; JI Tong ; LI Chunjie ; LIN Lisong ; REN Guoxin ; LI Yi ; SHANG Wei ; HAN Bing ; JIANG Canhua ; ZHANG Sheng ; SONG Ming ; LIU Xuekui ; WANG Anxun ; LIU Shuguang ; CHEN Zhanhong ; WANG Youyuan ; LIN Zhaoyu ; LI Haigang ; DUAN Xiaohui ; YE Ling ; ZHENG Jun ; WANG Jun ; LV Xiaozhi ; ZHU Lijun ; CAO Haotian
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(2):105-118
Oral squamous cell carcinoma (OSCC) is a common head and neck malignancy. Approximately 50% to 60% of patients with OSCC are diagnosed at a locally advanced stage (clinical staging III-IVa). Even with comprehensive and sequential treatment primarily based on surgery, the 5-year overall survival rate remains below 50%, and patients often suffer from postoperative functional impairments such as difficulties with speaking and swallowing. Programmed death receptor-1 (PD-1) inhibitors are increasingly used in the neoadjuvant treatment of locally advanced OSCC and have shown encouraging efficacy. However, clinical practice still faces key challenges, including the definition of indications, optimization of combination regimens, and standards for efficacy evaluation. Based on the latest research advances worldwide and the clinical experience of the expert group, this expert consensus systematically evaluates the application of PD-1 inhibitors in the neoadjuvant treatment of locally advanced OSCC, covering combination strategies, treatment cycles and surgical timing, efficacy assessment, use of biomarkers, management of special populations and immune related adverse events, principles for immunotherapy rechallenge, and function preservation strategies. After multiple rounds of panel discussion and through anonymous voting using the Delphi method, the following consensus statements have been formulated: 1) Neoadjuvant therapy with PD-1 inhibitors can be used preoperatively in patients with locally advanced OSCC. The preferred regimen is a PD-1 inhibitor combined with platinum based chemotherapy, administered for 2-3 cycles. 2) During the efficacy evaluation of neoadjuvant therapy, radiographic assessment should follow the dual criteria of Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 and immune RECIST (iRECIST). After surgery, systematic pathological evaluation of both the primary lesion and regional lymph nodes is required. For combination chemotherapy regimens, PD-L1 expression and combined positive score need not be used as mandatory inclusion or exclusion criteria. 3) For special populations such as the elderly (≥ 70 years), individuals with stable HIV viral load, and carriers of chronic HBV/HCV, PD-1 inhibitors may be used cautiously under the guidance of a multidisciplinary team (MDT), with close monitoring for adverse events. 4) For patients with a poor response to neoadjuvant therapy, continuation of the original treatment regimen is not recommended; the subsequent treatment plan should be adjusted promptly after MDT assessment. Organ transplant recipients and patients with active autoimmune diseases are not recommended to receive neoadjuvant PD-1 inhibitor therapy due to the high risk of immune related activation. Rechallenge is generally not advised for patients who have experienced high risk immune related adverse events such as immune mediated myocarditis, neurotoxicity, or pneumonitis. 5) For patients with a good pathological response, individualized de escalation surgery and function preservation strategies can be explored. This consensus aims to promote the standardized, safe, and precise application of neoadjuvant PD-1 inhibitor strategies in the management of locally advanced OSCC patients.
2.In Vitro and in vivo Component Analysis of Total Phenolic Acids from Gei Herba and Its Effect on Promoting Acute Wound Healing and Inhibiting Scar Formation
Xixian KONG ; Guanghuan TIAN ; Tong WU ; Shaowei HU ; Jie ZHAO ; Fuzhu PAN ; Jingtong LIU ; Yong DENG ; Yi OUYANG ; Hongwei WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):156-167
ObjectiveBased on ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Orbitrap-MS), to identify the in vivo and in vitro chemical components of total phenolic acids in Gei Herba(TPAGH), and to clarify the pharmacological effects and potential mechanisms of the effective part in promoting acute wound healing and inhibiting scar formation. MethodsUPLC-Q-Orbitrap-MS was used to identify the chemical components of TPAGH and ingredients absorbed in vivo after topical administration. A total of 120 ICR mice were randomly divided into the model group, recombinant human epidermal growth factor(rhEGF) group(4 mg·kg-1), and low, medium, and high dose groups of TPAGH(3.5, 7, 14 mg·kg-1), with 24 mice in each group. A full-thickness skin excision model was constructed, and each administration group was coated with the drug at the wound site, and the model group was treated with an equal volume of normal saline, the treatment was continued for 30 days, during which 8 mice from each group were sacrificed on days 6, 12, and 30. The healing of the wounds in the mice was observed, and histopathological changes in the skin tissues were dynamically observed by hematoxylin-eosin(HE), Masson, and Sirius red staining, and enzyme-linked immunosorbent assay(ELISA) was used to dynamically measure the contents of interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), vascular endothelial growth factor A(VEGFA), matrix metalloproteinase(MMP)-3 and MMP-9 in skin tissues. Network pharmacology was used to predict the targets related to the promotion of acute wound healing and the inhibition of scar formation by TPAGH, and molecular docking of key components and targets was performed. Gene Ontology(GO) biological process analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were carried out for the related targets, so as to construct a network diagram of herbal material-compound-target-pathway-pharmacological effect-disease for further exploring its potential mechanisms. ResultsA total of 146 compounds were identified in TPAGH, including 28 phenylpropanoids, 31 tannins, 23 triterpenes, 49 flavonoids, and 15 others, and 16 prototype components were found in the serum of mice. Pharmacodynamic results showed that, compared with the model group, the TPAGH groups showed a significant increase in relative wound healing rate and relative scar inhibition rate(P<0.05), and the number of new capillaries, number of fibroblasts, number of new skin appendages, epidermal regeneration rate, collagen deposition ratio, and Ⅲ/Ⅰ collagen ratio in the tissue were significantly improved(P<0.05, 0.01), the levels of IL-6, TNF-α, MMP-3 and MMP-9 in the skin tissues were reduced to different degrees, while the level of VEGFA was increased. Network pharmacology analysis screened 10 core targets, including tumor protein 53(TP53), sarcoma receptor coactivator(SRC), protein kinase B(Akt)1, signal transducer and activator of transcription 3(STAT3), epidermal growth factor receptor(EGFR) and so on, participating in 75 signaling pathways such as advanced glycation end-products(AGE)-receptor for AGE(AGE/RAGE) signaling pathway, phosphatidylinositol 3-kinase(PI3K)/Akt signaling pathway, mitogen-activated protein kinase(MAPK) signaling pathway. Molecular docking confirmed that the key components genistein, geraniin, and casuariin had good binding ability to TP53, SRC, Akt1, STAT3 and EGFR. ConclusionThis study comprehensively reflects the chemical composition of TPAGH and the absorbed components after topical administration through UPLC-Q-Orbitrap-MS. TPAGH significantly regulates key indicators of skin healing and tissue reconstruction, thereby clarifying its role in promoting acute wound healing and inhibiting scar formation. By combining in vitro and in vivo component identification with network pharmacology, the study explores how key components may bind to targets such as TP53, Akt1 and EGFR, exerting therapeutic effects through related pathways such as immune inflammation and vascular regeneration.
3.Exploration of Pulmonary Vascular Remodeling Improvement in Rats at Different Stages of Chronic Obstructive Pulmonary Disease by Qibai Pingfei Capsules Based on TLR4/NF-κB Signaling Pathway
Lu ZHANG ; Li FANG ; Shuyu XU ; Xue LIANG ; Jie ZHU ; Xiangli TONG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):48-56
ObjectiveTo investigate the improvement effect of Qibai Pingfei capsules on pulmonary vascular remodeling in rats at different stages of chronic obstructive pulmonary disease (COPD) and to analyze its possible mechanism of action. MethodsMale Sprague-Dawley (SD) rats were randomly divided into a normal group, an early COPD model group, an advanced COPD model group, an early-intervention high-dose group, a late-intervention high-dose group, an early-intervention low-dose group, a late-intervention low-dose group, an early-intervention pyrrolidine dithiocarbamate (PDTC) group, and a late-intervention PDTC group, with 15 rats in each group. A rat model of early COPD was constructed by using cigarette smoke combined with airway infusion using lipopolysaccharide(LPS), and a rat model of advanced COPD was constructed by using airway infusion with LPS, cigarette smoke, and hypoxia. All groups except the normal group were given LPS airway drops on days 1 and 14 of the experiment, smoked for 1 h per day, and administered the drug once a day for 40 weeks from day 15 onward. In the high- and low-dose groups, rats were given 1 g·kg-1 and 250 mg·kg-1 Qibai Pingfei capsules, respectively by gavage, and in PDTC groups, rats were given 100 mg·kg-1 of PDTC by intraperitoneal injection. The advanced COPD model group underwent 6 h of hypoxia per day in weeks 5-6. Lung function and mean pulmonary artery pressure were tested in rats. Morphologic changes in lung tissues were detected by hematoxylin-eosin(HE)staining. Collagen deposition in lung tissues was examined by Masson staining, and the levels of inflammatory factors including interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α)in lung tissues were detected by enzyme-linked immunosorbent assay (ELISA). The number of inflammatory cells in the alveolar lavage fluid of rats in each group was detected by Giemsa staining, and the protein expression of Toll-like receptor 4(TLR4), myeloid differentiation factor 88(MyD88), nuclear factor-κB(NF-κB), TNF-α, vascular endothelial-cadherin(VE-cadherin), α-smooth muscle actin(α-SMA), and platelet endothelial cell adhesion molecule-1(CD31) was detected by Western blot in the lung tissues of rats. ResultsCompared with the normal group, the model group showed significantly decreased forced expiratory volume in 0.3 s (FEV0.3), forced vital capacity (FVC), and FEV0.3/FVC ratio related to lung function (P<0.05), thickening of pulmonary vasculature, increased collagen deposition in the lungs, and enhanced mean pulmonary arterial pressure and expression levels of IL-6, IL-1β, and TNF-α (P<0.05). Additionally, the model group also exhibited increased numbers of macrophages, lymphocytes, and neutrophils (P<0.05), significantly higher protein expression of TLR4, MyD88, NF-κB, TNF-α, and α-SMA (P<0.05), and significantly lower protein expression of VE-cadherin and CD31 (P<0.05). Lung function was significantly improved in the Qibai Pingfei capsules groups compared with the model group (P<0.05), with mean pulmonary arterial pressure reduced and pulmonary vascular thickening and collagen deposition in the lungs ameliorated. The Qibai Pingfei capsules groups also showed reduced expression levels of IL-6, IL-1β, and TNF-α (P<0.05) and decreased numbers of macrophages, lymphocytes, and neutrophils (P<0.05), as well as reduced protein expression of TLR4, MyD88, NF-κB, TNF-α, and α-SMA (P<0.05) and elevated protein expression of VE-cadherin and CD31 (P<0.05) in rat lung tissues. ConclusionQibai Pingfei capsules inhibits inflammatory response and endothelial-to-mesenchymal transition probably by regulating the TLR4/NF-κB signaling pathway, thus improving pulmonary vascular remodeling in COPD model rats and showing therapeutic effects in the early stage of COPD.
4.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
5.Analysis of subjective visual vertical test results in patients with benign paroxysmal positional vertigo at different head deflection angles
Maolin QIN ; Xiaobao MA ; Dekun GAO ; Jiali SHEN ; Qin ZHANG ; Yulian JIN ; Jie WANG ; Jun YANG ; Jianyong CHEN
Chinese Journal of Clinical Medicine 2025;32(2):183-187
Objective To analyze the clinical significance of subjective visual vertical (SVV) tests at different head deflection angles in assessing utricle function in patients with benign paroxysmal positional vertigo (BPPV). Methods A total of 61 BPPV patients who were treated at the Hearing Impairment and Vertigo Diagnosis and Treatment Center of Otolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine from August 2022 to May 2023 were retrospectively included, and 29 healthy adults were selected as controls. SVV tests were performed on all research subjects at different head deflection angles: upright head (0°), left head 45° (L45°), right head 45° (R45°). The test results between the two groups were compared. Results SVV absolute value at R45° in BPPV group was lower than that in the control group (P=0.003); there was no significant difference in SVV values at 0° and L45° between the two groups. There was no statistical difference in SVV values at different head deflection angles between the control group and the left BPPV group. SVV absolute value at R45° in right BPPV group was lower than that in the control group (P<0.001); there was no statistical difference in SVV values at 0° and L45° between the two groups. Conclusions SVV test can provide subjective information about the utricle, and SVV tests at different head deflection angles can fine-tune evaluate the function of the utricle in BPPV patients.
6.Promotion of Angiogenesis by Colorectal Cancer Cell LoVo Derived-exosomes Through Transferring pEGFR
Ya-Jie CHENG ; Xue-Tong ZHOU ; Rui WANG ; Jin FANG
Progress in Biochemistry and Biophysics 2025;52(5):1229-1240
ObjectiveThis study sought to investigate the impact of exosomes derived from LoVo cells (LoVo-Exos) in colorectal cancer (CRC) on tumor angiogenesis, as well as to elucidate the potential molecular mechanisms underlying their pro-angiogenic effects. MethodsLoVo-Exos were isolated via ultracentrifugation, and their internalization into recipient human umbilical vein endothelial cells (HUVECs) was visualized using confocal microscopy. The influence of LoVo-Exos on angiogenesis was assessed through an in vitro tube formation assay. Additionally, the pro-angiogenic effects of LoVo-Exos were evaluated in vivo using a matrix gluing assay in mice. To investigate the molecular mechanisms through which LoVo-Exos facilitate angiogenesis, Western blot analysis was employed to examine the transfer of pEGFR by LoVo-Exos into recipient cells. Both Western blot and ELISA were utilized to assess the expression levels of key signaling proteins within the EGFR-ERK pathway, as well as the expression of downstream angiogenic core molecules. Furthermore, the impact of EGFR knockdown and ERK inhibitor treatment on angiogenesis was evaluated, with subsequent analysis of the expression of downstream angiogenic core molecules following these interventions. ResultsConfocal microscopy demonstrated the internalization of LoVo-Exos into HUVECs. In vitro angiogenesis assays further indicated that LoVo-Exos significantly enhanced the formation of tubular structures in HUVECs. Additionally, macroscopic examination of subcutaneous matrix plug formation in mice revealed a substantial increase in vascular-like structures within the matrix plugs following the administration of LoVo-Exos, compared to the PBS control group. Hematoxylin and eosin (HE) staining revealed the presence of erythrocyte-filled microvessels within the matrix plugs combined with LoVo-Exos. Furthermore, immunohistochemical analysis demonstrated the expression of the endothelial cell marker CD31 in these matrix plugs. The presence of CD31-positive cells in the LoVo-Exos-treated matrix plugs was associated with a significant enhancement in the formation of luminal structures. These findings suggest that LoVo-Exos facilitate the in vivo development of vascular-like structures. Subsequent investigations demonstrated that LoVo-Exos facilitated the delivery of pEGFR to HUVEC, thereby enhancing angiogenesis. Conversely, LoVo-Exos with EGFR knockdown exhibited a diminished capacity to promote angiogenesis, an effect that was further attenuated by the ERK phosphorylation inhibitor U0126. Western blot analysis assessing the activation of the EGFR-ERK signaling pathway in HUVEC indicated that LoVo-Exos augmented angiogenesis through the activation of this pathway. Furthermore, analysis of the impact of LoVo-Exos on the expression of downstream angiogenic core molecules revealed an increase in interleukin-8 (IL-8) secretion in HUVEC. The enhancement observed was diminished in LoVo-Exos following EGFR knockdown, and this reduction was counteracted by the ERK phosphorylation inhibitor U0126. ConclusionThe underlying mechanism may involve the delivery of pEGFR in LoVo-Exos to HUVECs, leading to increased IL-8 secretion via the EGFR-ERK signaling pathway, thereby enhancing the angiogenic potential of HUVECs. This finding may offer new insights into the mechanisms underlying cancer metastasis.
7.Mechanism of Exogenous Melatonin in Inhibiting Early Bolting in Angelica sinensis
Jiang ZHAO ; Zhanwen TANG ; Tao YANG ; Jie SHA ; Tong PENG ; Weiwen LU ; Yinquan WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):234-240
ObjectiveThis study aims to investigate the effects of different sizes of seedlings and melatonin treatment on physiological and biochemical indicators and bolting-related gene expression in Angelica sinensis, find substances related to early bolting, and elucidate the inhibitory mechanism of melatonin on bolting. MethodsSpectrophotometry was used to detect the related enzyme activities of A. sinensis leaves. The contents of endogenous hormones and polyamines were detected using ultra-high performance liquid chromatography-tandem mass spectrometry. Real-time polymerase chain reaction (Real-time PCR) was used to detect the expression levels of bolting-related genes. Inter-group differential indicator analysis, orthogonal partial least squares discriminant analysis, and principal component analysis were comprehensively applied to identify factors related to early bolting. ResultsEndogenous jasmonic acid and melatonin were identified as the most important factors affecting early bolting. Secondly, the activity of antioxidant enzymes, abscisic acid content, gibberellin content, and the expression levels of CO3, HD3A, and FD genes had important effects on the bolting process. Compared with small seedlings, exogenous melatonin treatment mainly inhibited early bolting by increasing endogenous melatonin content, reducing gibberellin content, and decreasing the expression levels of SOC1 and FD genes. ConclusionExogenous melatonin can inhibit early bolting in A. sinensis by regulating its physiological, biochemical, and gene expression levels.
8.Disease Burden of Malignant Tumors Among Residents of Kunshan City, Jiangsu Province, 2006–2021
Zhouquan FAN ; Wenbin HU ; Yixu JIN ; Lyulin LU ; Jie ZHOU ; Lan TONG ; Wei QIN
Cancer Research on Prevention and Treatment 2025;52(5):411-417
Objective To analyze the burden of disease of malignant tumors in Kunshan City from 2006 to 2021. Methods The global burden of disease research methodology was applied. The indicators of cancer incidence, mortality, and disability-adjusted life years (DALYs) in Kunshan were calculated using the data from the Tumor Registry System and Death Registry System in Kunshan. The changes in cancer were compared. Results In 2021, the number of incidences and deaths and the DALYs of cancer were
9.Mechanism of Exogenous Melatonin in Inhibiting Early Bolting in Angelica sinensis
Jiang ZHAO ; Zhanwen TANG ; Tao YANG ; Jie SHA ; Tong PENG ; Weiwen LU ; Yinquan WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):234-240
ObjectiveThis study aims to investigate the effects of different sizes of seedlings and melatonin treatment on physiological and biochemical indicators and bolting-related gene expression in Angelica sinensis, find substances related to early bolting, and elucidate the inhibitory mechanism of melatonin on bolting. MethodsSpectrophotometry was used to detect the related enzyme activities of A. sinensis leaves. The contents of endogenous hormones and polyamines were detected using ultra-high performance liquid chromatography-tandem mass spectrometry. Real-time polymerase chain reaction (Real-time PCR) was used to detect the expression levels of bolting-related genes. Inter-group differential indicator analysis, orthogonal partial least squares discriminant analysis, and principal component analysis were comprehensively applied to identify factors related to early bolting. ResultsEndogenous jasmonic acid and melatonin were identified as the most important factors affecting early bolting. Secondly, the activity of antioxidant enzymes, abscisic acid content, gibberellin content, and the expression levels of CO3, HD3A, and FD genes had important effects on the bolting process. Compared with small seedlings, exogenous melatonin treatment mainly inhibited early bolting by increasing endogenous melatonin content, reducing gibberellin content, and decreasing the expression levels of SOC1 and FD genes. ConclusionExogenous melatonin can inhibit early bolting in A. sinensis by regulating its physiological, biochemical, and gene expression levels.
10.Astragali Radix-Curcumae Rhizoma drug pair inhibits growth of osteosarcoma by affecting cell adhesion and angiogenesis via PI3K/Akt/HIF-1α pathway.
Dao-Tong YUAN ; Zhi-Meng ZHANG ; Rui GONG ; Xi-Min JIN ; Can-Ran WANG ; Jie ZHAO
China Journal of Chinese Materia Medica 2025;50(8):2217-2228
This study aims to investigate the optimal ratio of Astragali Radix-Curcumae Rhizoma(AC) for inhibiting the proliferation of 143B osteosarcoma cells, and to investigate the mechanism by which AC inhibits osteosarcoma growth and metastasis through angiogenesis and cell adhesion mediated by the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/hypoxia inducible factor-1α(HIF-1α) pathway. A subcutaneous 143B tumor-bearing nude mouse model was successfully established and randomly divided into the model group, and the AC 1∶1, 2∶1, and 4∶1 groups. Body weight, tumor volume, and tumor weight were recorded. Real-time quantitative polymerase chain reaction(RT-qPCR) and Western blot were used to detect the mRNA and protein expression levels of PI3K, Akt, phosphorylated Akt(p-Akt), HIF-1α, vascular endothelial growth factor A(VEGFA), transforming growth factor-β1(TGF-β1), epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), vimentin, matrix metalloproteinase 2(MMP2), matrix metalloproteinase 9(MMP9), B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), and caspase-3 in the hypoxic core region of the tumor tissue. A cell hypoxia model was established, and the effects of AC-medicated serum(model group, AC 1∶1, 2∶1, and 4∶1 groups) on angiogenesis, proliferation, adhesion, invasion, and migration of 143B osteosarcoma cells were examined through CCK-8, flow cytometry, Transwell assay, cell adhesion assay, and HUVEC tube formation assay. The results showed that compared with the model group, the tumor weight and volume were smallest in the 2∶1 group. The expression levels of PI3K, Akt, p-Akt, HIF-1α, VEGFA, and TGF-β1 were significantly decreased, and the protein expression of E-cadherin was significantly increased, while the protein expression of N-cadherin, vimentin, MMP2, and MMP9 was significantly decreased. Additionally, the protein expression of Bax and caspase-3 was significantly increased, and Bcl-2 protein expression was significantly decreased. In vitro experiments showed that after intervention with AC-medicated serum at a 2∶1 ratio, the cell activity, adhesion, invasion, and migration of 143B cells were significantly reduced, apoptosis was significantly increased, and HUVEC tube formation was significantly decreased. In conclusion, the 2∶1 ratio of AC showed the most effective inhibition of 143B cell growth. AC can inhibit the growth and metastasis of osteosarcoma 143B cells by regulating the PI3K/Akt/HIF-1α signaling pathway, inhibiting angiogenesis and reducing cell adhesion, invasion, and migration.
Osteosarcoma/pathology*
;
Animals
;
Proto-Oncogene Proteins c-akt/genetics*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Humans
;
Mice
;
Cell Adhesion/drug effects*
;
Cell Proliferation/drug effects*
;
Neovascularization, Pathologic/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Cell Line, Tumor
;
Mice, Nude
;
Signal Transduction/drug effects*
;
Astragalus Plant/chemistry*
;
Bone Neoplasms/physiopathology*
;
Male
;
Rhizome/chemistry*
;
Mice, Inbred BALB C
;
Angiogenesis


Result Analysis
Print
Save
E-mail