1.Effect and mechanism of bumetanide on lung injury in chronic obstructive pulmonary disease model rats
Yu LEI ; Jing LU ; Wenjuan HE ; Jiaying GU ; Dengfeng ZHOU
China Pharmacy 2025;36(8):939-944
OBJECTIVE To investigate the effect and mechanism of bumetanide on lung injury in chronic obstructive pulmonary disease (COPD) model rats. METHODS COPD rat model was induced by lipopolysaccharide, and they were randomly divided into model group (COPD group), bumetanide low-dose and high-dose groups (Bumetanide-L group, Bumetanide-H group), bumetanide high-dose+Yes-associated protein/transcriptional coactivator containing PDZ-binding motif (YAP/TAZ) signaling pathway activator group (Bumetanide-H+PY-60 group), with 12 rats in each group. Another 12 normal rats were selected as normal control group (Control group). Thirty minutes before modeling, bumetanide/normal saline was inhaled or/and PY-60/ normal saline was injected into the tail vein. On the next day after the completion of modeling and drug administration, the pulmonary function index of the rats in each group was measured [forced expiratory volume in 0.3 seconds (FEV0.3), forced vital capacity (FVC), peak expiratory flow (PEF), FEV0.3/FVC]. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β in bronchoalveolar lavage fluid (BALF) were determined; the pathological morphology of lung tissue and degree of pulmonary fibrosis were observed. The expression levels of transforming growth factor- β (TGF- β), α -smooth muscle actin (α-SMA) and TAZ protein as well as the phosphorylation of YAP protein in lung tissues were detected. RESULTS Compared with COPD group, the pathological injury of lung tissue in Bumetanide-L and Bumetanide-H groups was alleviated; the exfoliation of lung epithelial cells, tube wall thickening and the degree of pulmonary fibrosis were alleviated; inflammatory cell infiltration was reduced, and blue collagen deposition was reduced; FEV0.3, FVC, FEV0.3/FVC and PEF were significantly increased, while the lung injury score, levels of TNF-α, IL-6, IL-1β, expression levels of TGF-β, α-SMA and TAZ protein and the phosphorylation of YAP protein were significantly decreased (P<0.05). PY-60 could significantly reverse the improvement effects of bumetanide on above indexes (P<0.05). CONCLUSIONS Bumetanide can alleviate lung injury, inflammatory response and pulmonary fibrosis in COPD rats, and its mechanism is related to inhibiting YAP/TAZ signaling pathway.
2.Drofenine as a Kv2.1 inhibitor alleviated AD-like pathology in mice through Aβ/Kv2.1/microglial NLRP3/neuronal Tau axis.
Jian LU ; Qian ZHOU ; Danyang ZHU ; Hongkuan SONG ; Guojia XIE ; Xuejian ZHAO ; Yujie HUANG ; Peng CAO ; Jiaying WANG ; Xu SHEN
Acta Pharmaceutica Sinica B 2025;15(1):371-391
Alzheimer's disease (AD) is a neurodegenerative disease with clinical hallmarks of progressive cognitive impairment. Synergistic effects of the Aβ-Tau cascade reaction are tightly implicated in AD pathology, and microglial NLRP3 inflammasome activation drives neuronal tauopathy. However, the underlying mechanism of how Aβ mediates NLRP3 inflammasome remains unclear. Herein, we determined that oligomeric Aβ (o-Aβ) bound to microglial Kv2.1 and promoted Kv2.1-dependent potassium efflux to activate NLRP3 inflammasome resulting in neuronal tauopathy by using Kv2.1 inhibitor drofenine (Dfe) as a probe. The underlying mechanism has been intensively investigated by assays with Kv2.1 knockdown in vitro (si-Kv2.1) and in vivo (AAV-ePHP-si-Kv2.1). Dfe deprived o-Aβ of its capability to promote microglial NLRP3 inflammasome activation and neuronal Tau hyperphosphorylation by inhibiting the Kv2.1/JNK/NF-κB pathway while improving the cognitive impairment of 5×FAD-AD model mice. Our results have highly addressed that the Kv2.1 channel is required for o-Aβ-driven microglial NLRP3 inflammasome activation and neuronal tauopathy in AD model mice and highlighted that Dfe as a Kv2.1 inhibitor shows potential in the treatment of AD.
3.Ablation of macrophage transcriptional factor FoxO1 protects against ischemia-reperfusion injury-induced acute kidney injury.
Yao HE ; Xue YANG ; Chenyu ZHANG ; Min DENG ; Bin TU ; Qian LIU ; Jiaying CAI ; Ying ZHANG ; Li SU ; Zhiwen YANG ; Hongfeng XU ; Zhongyuan ZHENG ; Qun MA ; Xi WANG ; Xuejun LI ; Linlin LI ; Long ZHANG ; Yongzhuo HUANG ; Lu TIE
Acta Pharmaceutica Sinica B 2025;15(6):3107-3124
Acute kidney injury (AKI) has high morbidity and mortality, but effective clinical drugs and management are lacking. Previous studies have suggested that macrophages play a crucial role in the inflammatory response to AKI and may serve as potential therapeutic targets. Emerging evidence has highlighted the importance of forkhead box protein O1 (FoxO1) in mediating macrophage activation and polarization in various diseases, but the specific mechanisms by which FoxO1 regulates macrophages during AKI remain unclear. The present study aimed to investigate the role of FoxO1 in macrophages in the pathogenesis of AKI. We observed a significant upregulation of FoxO1 in kidney macrophages following ischemia-reperfusion (I/R) injury. Additionally, our findings demonstrated that the administration of FoxO1 inhibitor AS1842856-encapsulated liposome (AS-Lipo), mainly acting on macrophages, effectively mitigated renal injury induced by I/R injury in mice. By generating myeloid-specific FoxO1-knockout mice, we further observed that the deficiency of FoxO1 in myeloid cells protected against I/R injury-induced AKI. Furthermore, our study provided evidence of FoxO1's pivotal role in macrophage chemotaxis, inflammation, and migration. Moreover, the impact of FoxO1 on the regulation of macrophage migration was mediated through RhoA guanine nucleotide exchange factor 1 (ARHGEF1), indicating that ARHGEF1 may serve as a potential intermediary between FoxO1 and the activity of the RhoA pathway. Consequently, our findings propose that FoxO1 plays a crucial role as a mediator and biomarker in the context of AKI. Targeting macrophage FoxO1 pharmacologically could potentially offer a promising therapeutic approach for AKI.
4.Pulsatilla saponin D inhibits invasion and metastasis of triple-negative breast cancer cells through multiple targets and pathways.
Qiao CHU ; Xiaona WANG ; Jiaying XU ; Huilin PENG ; Yulin ZHAO ; Jing ZHANG ; Guoyu LU ; Kai WANG
Journal of Southern Medical University 2025;45(1):150-161
OBJECTIVES:
To explore the mechanism by which Pulsatilla saponin D (PSD) inhibits invasion and metastasis of triple-negative breast cancer (TNBC).
METHODS:
The public databases were used to identify the potential targets of PSD and the invasion and metastasis targets of TNBC to obtain the intersection targets between PSD and TNBC. The "PSD-target-disease" interaction network was constructed and protein-protein interaction (PPI) analysis was performed to obtain the core targets, which were analyzed for KEGG pathway and GO functional enrichment. Molecular docking study of the core targets and PSD was performed, and the therapeutic effect and mechanism of PSD were verified using Transwell assay and Western blotting in cultured TNBC cells.
RESULTS:
Network pharmacology analysis identified a total of 285 potential PSD targets and 26 drug-disease intersection core targets. GO analysis yielded 175 entries related to the binding of biomolecules (protein, DNA and RNA), enzyme activities, and regulation of gene transcription. KEGG analysis yielded 46 entries involving pathways in cancer, chemical carcinogenesis-receptor activation, microRNAs in cancer, chemical carcinogenesis-reactive oxygen species, PD-L1 expression and PD-1 checkpoint pathway in cancer. Molecular docking showed high binding affinities of PSD to MTOR, HDAC2, ABL1, CDK1, TLR4, TERT, PIK3R1, NFE2L2 and PTPN1. In cultured TNBC cells, treatment with PSD significantly inhibited cell invasion and migration and lowered the expressions of MMP2, MMP9, N-cadherin and the core proteins p-mTOR, ABL1, TERT, PTPN1, HDAC2, PIK3R1, CDK1, TLR4 as well as NFE2L2 expressionin the cell nuclei.
CONCLUSIONS
The inhibitory effects of PSD on TNBC invasion and metastasis are mediated by multiple targets and pathways.
Humans
;
Triple Negative Breast Neoplasms/metabolism*
;
Saponins/pharmacology*
;
Pulsatilla/chemistry*
;
Female
;
Molecular Docking Simulation
;
Cell Line, Tumor
;
Neoplasm Invasiveness
;
Protein Interaction Maps
;
Neoplasm Metastasis
;
Signal Transduction/drug effects*
;
Cell Movement/drug effects*
5.Visualization of Brain Abnormal β-Amyloid Deposition in Alzheimer's Disease Based on 18F-Florbetaben PET Imaging
Huamei LIN ; Yunhao YANG ; Jiaying LU ; Zhengwei ZHANG ; Shufen CHEN ; Jingjie GE ; Yihui GUAN ; Chuantao ZUO
Chinese Journal of Medical Imaging 2024;32(5):420-425
Purpose To investigate the characteristics of 18F-Florbetaben(18F-FBB)β-amyloid(Aβ)PET imaging in different brain regions of Alzheimer's disease(AD)patients with different degrees of cognitive impairment,and to explore the correlation between Aβ deposition and cognitive dysfunction.Materials and Methods A total of eighteen patients with a clinical diagnosis of probable AD from August 2022 to October 2023 were retrospectively included in Huashan Hospital.All patients had Aβ abnormal deposition in the brain as confirmed by 18F-FBB PET imaging.According to the severity of symptoms,they were divided into the AD-induced mild cognitive impairment(MCI)group(8 cases)and the dementia group(10 cases).In addition,12 healthy controls were included.First,the standardized uptake value ratio of abnormal Aβ deposition in the frontal lobe,lateral parietal lobe,lateral temporal lobe,anterior and posterior cingulate gyrus,and compound cortex was semi-quantitatively calculated and compared among the three groups based on the subjects'brain MRI and automated anatomical labeling template.The correlation between the degree of Aβ deposition in the brains of AD patients and cognitive scale scores(mini-mental state examination,Montreal cognitive assessment)was then further analyzed.Results The standardized uptake value ratio values of Aβabnormal deposition in the frontal lobe,lateral temporal lobe,lateral parietal lobe,anterior and posterior cingulate cortex and compound cortex in the AD-induced MCI and dementia groups were significantly higher than those in the healthy controls(t=7.442-9.151,all P<0.05).However,there was no significant difference in the standardized uptake value ratio values of Aβ abnormal deposition in the above brain regions between the MCI and dementia groups(t=0.312-0.996,all P>0.05).In addition,there was no significant correlation between the degree of Aβ deposition in the brain and the cognitive scale scores(mini-mental state examination,Montreal cognitive assessment)in the AD-induced MCI and dementia groups(r=-0.049-0.050,all P>0.05).Conclusion Aβ deposition in the brains of AD-induced MCI and dementia is significantly higher than in the healthy controls.However,Aβ deposition cannot identify AD patients with different degrees of cognitive impairment,reflecting that Aβ deposition has certain limitations in assessing the severity of clinical symptoms of AD.
6.18F-Florzolotau PET Imaging of Abnormal tau Protein Deposition in Alzheimer's Disease
Fangyang JIAO ; Jiaying LU ; Ming LI ; Qi HUANG ; Weiqi BAO ; Zhengwei ZHANG ; Zizhao JU ; Qianhua ZHAO ; Yihui GUAN ; Chuantao ZUO ; Huiwei ZHANG
Chinese Journal of Medical Imaging 2024;32(5):426-430,438
Purpose To explore the value of the new generation tau PET tracer 18F-Florzolotau in Alzheimer's disease(AD)at different stages.Materials and Methods Twenty-five MCI patients and sixty-one AD patients with positive β-amyloid status in Huashan Hospital,Fudan University from February 2020 to January 2022 were retrospectively enrolled with 18F-Florzolotau PET imaging and demographic and clinical data.The pre-processed PET images were analyzed by SPM two-sample t-test between MCI and AD groups,and the standardized uptake value ratios(SUVR)were extracted from the region of interest defined by SPM analysis(P<0.001);scaled subprofile model/principal component analysis was used to construct the different tau related patterns(MCItauRP,ADtauRP)and calculate the corresponding expression values.The classification efficiency of SUVR and MCItauRP,ADtauRP expression values was evaluated by receiver operating characteristic curve.Results Compared with MCI patients,tau protein deposition of AD patients was increased mainly in the bilateral temporal,occipital lobe(P<0.001),and the SUVR of these brain region in the AD group was higher than that in the MCI group(Z=-3.164,P<0.00l);the expression values of MCItauRP and ADtauRP were significantly different between the AD group and MCI group(t=3.72,Z=-3.51;both P<0.001),and these expression values of AD patients were higher than those in the MCI group;the accuracy of tauRP expression values and SUVR for the differentiation between the AD and MCI group were 61.63%,65.12%and 65.12%,respectively;the sensitivity was 88.00%,96.00%and 100.00%,respectively;the specificity was 50.82%,52.46%and 50.82%,respectively.Conclusion The new tau PET can identify and distinguish the differences in tau protein deposition between AD and MCI patients.However,the classification and diagnosis efficiency is not high.In the future,it is necessary to find a more ideal analysis method.
7.Effects of different reference brain regions on the SUV ratio of 18F-Florzolotau PET images in Alzheimer′s disease
Qi ZHANG ; Rong SHI ; Min WANG ; Jiaying LU ; Luyao WANG ; Qianhua ZHAO ; Fangyang JIAO ; Ming LI ; Yihui GUAN ; Chuantao ZUO ; Jiehui JIANG
Chinese Journal of Nuclear Medicine and Molecular Imaging 2024;44(5):279-284
Objective:To compare the effects of different reference brain regions on the semi-quantitative SUV ratio (SUVR) of 18F-Florzolotau PET images of Alzheimer′s disease (AD). Methods:The 18F-Florzolotau PET images of 28 (13 males, 15 females, age (57.3±9.5) years) normal controls (NC), 19 patients (4 males, 15 females, age (73.3±7.3) years) with β-amyloid (Aβ)-positive mild cognitive impairment (MCI) and 40 patients (19 males, 21 females, age (61.9±9.1) years) with AD were collected from Huashan Hospital, Fudan University between November 2018 and July 2020. Six semi-quantitative reference brain regions were defined, including whole cerebellum (WC), cerebellar gray matter (GM), cerebellar white matter (WM), parametric estimation of reference signal intensity (PERSI), WC after partial volume correction (WC_pvc), cerebellar GM after partial volume correction (GM_pvc). SUVR was calculated for 14 ROIs, which included the whole brain defined by the automated anatomical labeling (AAL) template, fusiform, inferior temporal, lingual, middle temporal, occipital, parahippocampal, parietal, posterior cingulate, precuneus defined by the AAL template, and Meta ROI composed of the above brain regions, and braak_Ⅰ-Ⅱ, braak_Ⅲ-Ⅳ, braak_Ⅴ-Ⅵ defined by the Desikan Killiany template. AUC was used to evaluate the classification ability of SUVR, and the correlation between SUVR and clinical scale scores were assessed by Spearman rank correlation analysis. Results:The SUVRs of most brain regions showed a steady upward trend in the AD disease spectrum. In the classification task of NC and MCI, the overall performance of SUVR based on WC_pvc was relatively optimal (AUCs: 0.975-1.000). In the classification task of NC and AD, SUVRs of 10 ROIs based on the WC_pvc method showed the relatively best performance (AUCs: 0.976-1.000). The correlation between SUVR of fusiform based on cerebellar WM and mini-mental state examination (MMSE) score was the strongest ( rs=-0.72, P<0.001), and the SUVR of precuneus based on WC_pvc showed the strongest correlation with clinical dementia rating (CDR) score ( rs=0.78, P<0.001). Conclusion:The SUVR based on WC_pvc method performs well in classification and correlation tasks, and is recommended to be used in semi-quantification of 18F-Florzolotau PET images of AD.
8.Prognostic values of 18F-FDG PET/CT metabolic parameters combined with clinical pathological indicators in cutaneous malignant melanoma
Rongchen AN ; Yunhua WANG ; Xinyu LU ; Lianbo ZHOU ; Xiaowei MA ; Chuning DONG ; Xin XIANG ; Xuan YIN ; Honghui GUO ; Jiaying YUAN
Chinese Journal of Nuclear Medicine and Molecular Imaging 2024;44(7):396-400
Objective:To discuss the relationship between 18F-FDG PET/CT metabolic parameters and clinical pathological indicators and prognosis in cutaneous malignant melanoma (CMM). Methods:A total of 100 CMM patients (62 males, 38 females, age (56.5±2.5) years) who underwent 18F-FDG PET/CT scans at the Second Xiangya Hospital of Central South University from August 2013 to November 2022 were retrospectively enrolled. Clinical pathological indicators (such as primary site, TNM staging, sentinel lymph node (SLN) status) and metabolic parameters (SUV max, metabolic tumor volume (MTV), total lesion glycolysis (TLG), whole-body MTV (wb-MTV), and whole-body TLG (wb-TLG)) were collected. ROC curve analyses were used to determine the PET parameters thresholds for progression-free survival (PFS) and melanoma-specific survival (MSS). Kaplan-Meier survival analysis, univariate and multivariate Cox proportional hazards regression models were used to analyze the prognosis of patients′ PFS and MSS, and a nomogram survival prediction model was constructed. Results:Results of ROC curve analyses showed that the thresholds of SUV max of primary tumor (p-SUV max), MTV of primary tumor (p-MTV), TLG of primary tumor (p-TLG), wb-MTV and wb-TLG for predicting PFS and MSS were 7.13, 2.24 cm 3, 6.98 g, 2.57 cm 3, 8.04 g and 9.09, 2.34 cm 3, 7.44 g, 2.24 cm 3, 9.17 g, respectively. Results of univariate analysis indicated that several clinical pathological indicators and metabolic parameters were prognostic risk factors for PFS and MSS. Results of multivariate analysis indicated that metastases of SLN (hazard ratio( HR)=2.54, 95% CI: 1.09-5.90; P=0.030) and wb-TLG>8.04 g( HR=2.58, 95% CI: 1.17-5.72; P=0.019) were independent prognostic risk factors for PFS, while metastases of SLN ( HR=4.53, 95% CI: 1.54-13.35; P=0.006) and wb-TLG>9.17 g ( HR=2.48, 95% CI: 1.26-4.89; P=0.009) were independent risk prognostic factors for MSS. A nomogram survival prediction model based on PET metabolic parameter (wb-TLG) and clinical pathological indicator (SLN status) can effectively predict the prognosis of CMM patients. Conclusions:Clinical pathological parameters and PET parameters are associated with the prognosis of CMM patients. SLN status is critical for prognosis.
9.Harmonization of 18F-FDG PET brain imaging based on ComBat method: a pilot study
Fangyang JIAO ; Dan WANG ; Yuhua ZHU ; Jiaying LU ; Zizhao JU ; Qian XU ; Jingjie GE ; Tao HUA ; Ping WU ; Kuangyu SHI ; Yihui GUAN ; Chuantao ZUO
Chinese Journal of Nuclear Medicine and Molecular Imaging 2024;44(7):412-416
Objective:To perform harmonization based on the ComBat method for PET brain imaging scanned by different types of scanners from the same manufacturer and explored its effect on center effect.Methods:The three-dimensional (3D) Hoffman brain model was scanned by two different PET/CT instruments (Siemens Biograph64 TruePoint and Biograph128 mCT). Fourteen healthy subjects (8 males, 6 females, age: (57.7±9.5) years) underwent 18F-FDG PET/CT on Siemens Biograph64 TruePoint and 12 healthy subjects (9 males, 3 females, age: (55.8±10.5) years) underwent 18F-FDG PET/CT on Siemens Biograph128 mCT (all from Huashan Hospital, Fudan University; from November 2020 to March 2023). The whole brain was divided into 116 brain regions based on the anatomical automatic labeling (AAL) brain template. The ComBat method was applied to harmonized the PET data from brain model and healthy subjects. Mann-Whitney U test was performed on the radioactive counts and SUV ratios (SUVR) before and after homogenization acquired by both PET/CT instruments. Voxel-based statistical parametric mapping (SPM) independent-sample t test was also performed on data of healthy subjects. Results:In 3D Hoffman brain model, radioactivity counts (5 590.33(4 961.67, 6 102.95) vs 6 116.03(5 420.97, 6 660.66); z=-9.35, P<0.001) and SUVR (1.35(1.19, 1.47) vs 1.37(1.21, 1.49); z=-3.63, P<0.001) were significantly different between the two PET/CT scanners before harmonization and not after harmonization (radioactivity counts: 5 845.95(5 192.68, 6 378.63) vs 5 859.17(5 193.84, 6 380.52); SUVR: 1.35(1.20, 1.48) vs 1.36(1.20, 1.49); both z=-0.68, both P=0.498). In the healthy subjects, radioactive counts in 19 brain regions (12 422.78(11 181.60, 13 424.28)-18 166.40(15 882.80, 18 666.27); z values: from -3.24 to -2.06, all P<0.05) and SUVR in 40 brain regions (1.46(1.41, 1.52)-2.28(2.16, 2.36); z values: from -3.65 to -1.70, all P<0.05) were significantly different between the two scanners before harmonization, while after homogenization there were no statistical differences for all 116 brain regions (radioactivity counts: 9 243.55(8 502.38, 9 854.87)-20 419.60(19 931.51, 21 179.43); z values: from -0.72 to 0, all P>0.05; SUVR: 1.04(1.01, 1.09)-2.32(2.24, 2.40); z values: from -0.82 to 0, all P>0.05). SPM showed that significant differences of glucose metabolism in the cerebral cortex, basal ganglia, midbrain and cerebellum were found in healthy subjects between the two PET/CT scanners before homogenization, and brain regions with obvious differences reduced after homogenization. Conclusion:ComBat harmonization method is efficient at removing the center effect among different types of PET/CT scanners from the same manufacturer and may provide a simple and easy-to-implement homogenization for multicenter brain imaging studies.
10.Braak-tau IQ: a quantization decomposition method based on tau PET images in Alzheimer′s disease
Jianwei MEN ; Rong SHI ; Min WANG ; Qi ZHANG ; Jiaying LU ; Huiwei ZHANG ; Qianhua ZHAO ; Jiehui JIANG ; Chuantao ZUO ; Yihui GUAN
Chinese Journal of Nuclear Medicine and Molecular Imaging 2024;44(12):718-723
Objective:A voxel-level quantification method based on the tau IQ algorithm and Braak staging, excluding β-amyloid (Aβ) imaging, was developed to achieve specific tau quantification. Methods:This cross-sectional study included 92 subjects (35 males, 57 females; age (62.9±10.4) years) from the Nuclear Medicine/PET Center of Huashan Hospital, Fudan University between November 2018 and July 2020. The cohort comprised 28 cognitively normal (CN) individuals, 20 patients with mild cognitive impairment (MCI), and 44 patients with Alzheimer′s disease (AD). All participants underwent 18F-florzolotau PET imaging, Mini-Mental State Examination (MMSE), and Clinical Dementia Rating (CDR) scoring. A longitudinal tau dataset was constructed based on Braak staging. Voxel-level logistic regression fitting provided a baseline matrix, decomposed via least squares to yield the Tau load coefficient. One-way analysis of variance (with post hoc Tukey) was used to compare Tau load and SUV ratio (SUVR) among groups. ROC curve analysis was used to evaluate classification between CN, MCI and AD. Spearman rank correlation was used to assess the relationships between Tau load, SUVR, and MMSE scores or CDR scores. Results:The Tau load in the CN group was close to 0 and significantly lower than that in the MCI and AD groups ( F=55.03, P<0.001; post hoc tests all P<0.001). Significant differences were also observed in the SUVR across all ROIs ( F values: 36.46-55.38, all P<0.001). Compared to SUVR, Tau load demonstrated greater intergroup differences. In ROC curve analyses between each pair of CN, MCI, and AD groups, Tau load consistently achieved the highest AUC (0.754-1.000). Both Tau load and SUVR for each ROI were negatively correlated with MMSE scores ( rs values: from -0.698 to -0.583, all P<0.05) and positively correlated with CDR scores ( rs values: 0.648-0.783, all P<0.05), with Tau load showing the highest absolute correlation coefficients. Conclusion:Compared to the traditional semi-quantitative SUVR method, the Braak-tau IQ algorithm does not require a specific reference brain region to achieve specific tau quantification.

Result Analysis
Print
Save
E-mail