1.Exploring the treatment approach for bone marrow suppression after radiotherapy and chemotherapy from the perspective of "acute deficiency syndrome"
Zhiming LI ; Fen HUANG ; Jiawang JIANG ; Wei JIANG ; Xiaochun CHEN ; Xin LI
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):122-126
Bone marrow suppression is one of the common adverse reactions to radiotherapy and chemotherapy. Anticancer treatments such as radiotherapy and chemotherapy first directly damage the patient′s peripheral blood cells, impairing qi and blood; further, they damage the actively proliferating cell populations in the bone marrow, impairing yin and blood; and then they interfere with hematopoietic stem cells, impairing essence and blood. This process is rapid and intense, consistent with the characteristics of " acute deficiency syndrome" , marked by sudden onset, rapid changes, critical condition, complexity and variability, multiple complications, and poor prognosis. Given this, its diagnosis and treatment should differ from those of general deficiency syndromes. This paper advocates the principles and ideas of diagnosis and treatment such as " preventing first and treating early to prevent changes; supplementing for deficiency and strengthening vital qi to eliminate pathogenic factor; urgent rescue for critical conditions, no time to lose; and comprehensive supplementing throughout the process, with severe cases requiring singular action" . This approach is intended to provide theoretical reference and practical guidance for bone marrow suppression after radiotherapy and chemotherapy.
2.BRD4 regulates m6A of ESPL1 mRNA via interaction with ALKBH5 to modulate breast cancer progression.
Haisheng ZHANG ; Linlin LU ; Cheng YI ; Tao JIANG ; Yunqing LU ; Xianyuan YANG ; Ke ZHONG ; Jiawang ZHOU ; Jiexin LI ; Guoyou XIE ; Zhuojia CHEN ; Zongpei JIANG ; Gholamreza ASADIKARAM ; Yanxi PENG ; Dan ZHOU ; Hongsheng WANG
Acta Pharmaceutica Sinica B 2025;15(3):1552-1570
The interaction between m6A-methylated RNA and chromatin modification remains largely unknown. We found that targeted inhibition of bromodomain-containing protein 4 (BRD4) by siRNA or its inhibitor (JQ1) significantly decreases mRNA m6A levels and suppresses the malignancy of breast cancer (BC) cells via increased expression of demethylase AlkB homolog 5 (ALKBH5). Mechanistically, inhibition of BRD4 increases the mRNA stability of ALKBH5 via enhanced binding between its 3' untranslated regions (3'UTRs) with RNA-binding protein RALY. Further, BRD4 serves as a scaffold for ubiquitin enzymes tripartite motif containing-21 (TRIM21) and ALKBH5, resulting in the ubiquitination and degradation of ALKBH5 protein. JQ1-increased ALKBH5 then demethylates mRNA of extra spindle pole bodies like 1 (ESPL1) and reduces binding between ESPL1 mRNA and m6A reader insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3), leading to decay of ESPL1 mRNA. Animal and clinical studies confirm a critical role of BRD4/ALKBH5/ESPL1 pathway in BC progression. Further, our study sheds light on the crosstalks between histone modification and RNA methylation.
3.Neurokinin 1 receptor inhibition alleviated mitochondrial dysfunction via restoring purine nucleotide cycle disorder driven by substance P in acute pancreatitis.
Chenxia HAN ; Lu LI ; Lin BAI ; Yaling WU ; Jiawang LI ; Yiqin WANG ; Wanmeng LI ; Xue REN ; Ping LIAO ; Xiaoting CHEN ; Yaguang ZHANG ; Fengzhi WU ; Feng LI ; Dan DU ; Qing XIA
Acta Pharmaceutica Sinica B 2025;15(6):3025-3040
Acute pancreatitis (AP) is a life-threatening gastrointestinal disorder for which no effective pharmacological treatments are currently available. One of the pharmacological targets that merits further research is the neurokinin 1 receptor (NK1R), which is found on pancreatic acinar cells and responds to the neuropeptide substance P (SP) that participates in AP. Although a few studies have stated the involvement of SP/NK1R in neurogenic inflammation in AP development, the regulatory mechanism remains unclear. In this study, we found that following activation of NK1R by SP, β-arrestin1, a scaffold protein of NK1R, down-regulated transcription of Adss, Adsl, and Ampd in the purine nucleotide cycle, thereby inhibiting mitochondrial function through fumarate depletion. Interestingly, we identified magnolol as a new and natural NK1R inhibitor with a non-nitrogenous biphenyl core structure. It exhibited a beneficial effect on AP by restoring purine nucleotide cycle metabolic enzymes and fumarate levels. Our study not only provides new therapeutic strategies, leading compounds, and drug translation possibilities for AP, but also provides important clues for the study of downstream mechanisms driven by SP in other diseases.
4.Stellate Ganglion Block as an Adjunctive Intervention for Chronic Subjective Tinnitus: Efficacy and Predictive Indicators
Zhicheng LI ; Nan CHENG ; Jibin XING ; Jiawang TIAN ; Jianqi ZHAO ; Huajing TIAN ; Jiayi LIN ; Xiangli ZENG
Journal of Sun Yat-sen University(Medical Sciences) 2024;45(2):276-282
ObjectiveTo explore the efficacy and predictive indicators of stellate ganglion block (SGB) as an adjunctive intervention for chronic subjective tinnitus and accumulate experience for the application of SGB in the clinical treatment of tinnitus. MethodsA retrospective review was conducted on the data of chronic subjective tinnitus patients who received SGB intervention, with unsatisfactory outcomes otherwise. Pure tone audiometry (PTA), tinnitus loudness evaluation and Pittsburgh sleep quality index (PSQI) were used. The tinnitus handicap inventory (THI) scores were compared before and after SGB intervention. Correlation analysis and linear regression equations were employed to identify the potential indicators predicting the effectiveness of SGB intervention. Statistical analysis was performed by SPSS 24.0 software. ResultsBy April 2023, a total of 107 patients with chronic subjective tinnitus had undergone SGB intervention, including 67 male and 40 female, with a mean age of (45.32±11.40) years old and an average tinnitus history of (20.32±24.64) months [16 (12~20)]. Only 7 patients (6.54%) quitted the intervention for personal reasons, which demonstrated good compliance with the intervention. No patients experienced adverse reactions such as infection at the injection site, hematoma, nerve injury, local anesthetic intoxication and so on, which revealed good safety. After SGB intervention, THI scores decreased to below 36 points in 77 patients and decrease by 10 points or more in 12 of the remaining patients, with a total effective rate of 89%. A paired sample t-test showed a significant difference in THI scores before and after SGB intervention (t=15.575, P<0.001), indicating good improvement. Pearson correlation analysis suggested that pre-intervention THI scores and subjective tinnitus loudness were significantly positively correlated with the improvement level of THI scores (P<0.05). Further stepwise linear regression analysis found that "pre-intervention THI scores" had statistical significance (P<0.001), with a regression coefficient of 0.308, predicting a 17.4% improvement level in THI scores. ConclusionsDue to its good and safe short-term effects, SGB intervention can be used as a supplementary option for chronic subjective tinnitus when other interventions are not ideal, especially for patients with higher THI scores. However, further research is needed to clarify the long-term efficacy and underlying mechanisms, in order to establish a more solid theoretical basis for SGB intervention in the treatment of subjective tinnitus.
5.Exploring mechanism and experimental validation of Gubiao Fanggan Modified Formula in preventing influenza virus in immunosuppressive mice based on network pharmacology
Xinyue MA ; Jiawang HUANG ; Mengchen ZHU ; Zhuolin LIU ; Ziye XU ; Fangguo LU ; Ling LI
Chinese Journal of Immunology 2024;40(7):1447-1453,中插2-中插5
Objective:To invastigate the targets and signaling pathways of Gubiao Fanggan Modified Formula in regulating the defense against influenza A virus in immunosuppressed mice by network pharmacology,and the key targets were verified by immuno-suppressive mice model.Methods:TCMSP database was used to search the active ingredients of Gubiao Fanggan Modified Formula,and GeneCard,OMIM,PharmGkb databases were used to obtain the potential targets of the active ingredients to prevent influenza,and take their intersection targets were taken;STRING11.5 database was used to make protein-protein interaction network analyzed and finded the core targets;Cytoscape3.8.1 was used to build a traditional Chinese medicine-ingredient-disease target network,and GO enrichment analysis and KEGG enrichment analysis were performed.Intraperitoneal injection of cyclophosphamide was used to construct a mouse model of immune function suppression,normal group,model control group,Gubiao Fanggan Modified Formula group and oseltamivir group were set up,followed by prophylactic administration,and influenza virus intervention was performed on the fourth day.After 7 days of intragastric administration,the key targets were verified by mouse spleen index,HE staining,RT-qPCR and immunohistochemistry.Results:There were 82 active ingredients in five traditional Chinese medicines in Gubiao Fanggan Modi-fied Formula,and 72 common targets of drugs and diseases such as IL-6,TNF-α,IL-2,etc,mainly involving IL-17,TNF and AGE-RAGE signaling pathway.Gubiao Fanggan Modified Formula could increase spleen index and significantly reduce mRNA and protein expressions of IL-6 and TNF-α in spleen tissue of mice(P<0.05 or P<0.01).Conclusion:Gubiao Fanggan Modified Formula may regulate body's immune function through targets such as IL-6 and TNF-α,thereby preventing influenza virus infection.
6.Deficiency of ASGR1 Alleviates Diet-Induced Systemic Insulin Resistance via Improved Hepatic Insulin Sensitivity
Xiaorui YU ; Jiawang TAO ; Yuhang WU ; Yan CHEN ; Penghui LI ; Fan YANG ; Miaoxiu TANG ; Abdul SAMMAD ; Yu TAO ; Yingying XU ; Yin-Xiong LI
Diabetes & Metabolism Journal 2024;48(4):802-815
Background:
Insulin resistance (IR) is the key pathological basis of many metabolic disorders. Lack of asialoglycoprotein receptor 1 (ASGR1) decreased the serum lipid levels and reduced the risk of coronary artery disease. However, whether ASGR1 also participates in the regulatory network of insulin sensitivity and glucose metabolism remains unknown.
Methods:
The constructed ASGR1 knockout mice and ASGR1-/- HepG2 cell lines were used to establish the animal model of metabolic syndrome and the IR cell model by high-fat diet (HFD) or drug induction, respectively. Then we evaluated the glucose metabolism and insulin signaling in vivo and in vitro.
Results:
ASGR1 deficiency ameliorated systemic IR in mice fed with HFD, evidenced by improved insulin intolerance, serum insulin, and homeostasis model assessment of IR index, mainly contributed from increased insulin signaling in the liver, but not in muscle or adipose tissues. Meanwhile, the insulin signal transduction was significantly enhanced in ASGR1-/- HepG2 cells. By transcriptome analyses and comparison, those differentially expressed genes between ASGR1 null and wild type were enriched in the insulin signal pathway, particularly in phosphoinositide 3-kinase-AKT signaling. Notably, ASGR1 deficiency significantly reduced hepatic gluconeogenesis and glycogenolysis.
Conclusion
The ASGR1 deficiency was consequentially linked with improved hepatic insulin sensitivity under metabolic stress, hepatic IR was the core factor of systemic IR, and overcoming hepatic IR significantly relieved the systemic IR. It suggests that ASGR1 is a potential intervention target for improving systemic IR in metabolic disorders.
7.Network pharmacology and experimental validation of Maxing Shigan decoction in the treatment of influenza virus-induced ferroptosis.
Jiawang HUANG ; Xinyue MA ; Zexuan LIAO ; Zhuolin LIU ; Kangyu WANG ; Zhiying FENG ; Yi NING ; Fangguo LU ; Ling LI
Chinese Journal of Natural Medicines (English Ed.) 2023;21(10):775-788
Influenza is an acute viral respiratory infection that has caused high morbidity and mortality worldwide. Influenza A virus (IAV) has been found to activate multiple programmed cell death pathways, including ferroptosis. Ferroptosis is a novel form of programmed cell death in which the accumulation of intracellular iron promotes lipid peroxidation, leading to cell death. However, little is known about how influenza viruses induce ferroptosis in the host cells. In this study, based on network pharmacology, we predicted the mechanism of action of Maxing Shigan decoction (MXSGD) in IAV-induced ferroptosis, and found that this process was related to biological processes, cellular components, molecular function and multiple signaling pathways, where the hypoxia inducible factor-1(HIF-1) signaling pathway plays a significant role. Subsequently, we constructed the mouse lung epithelial (MLE-12) cell model by IAV-infected in vitro cell experiments, and revealed that IAV infection induced cellular ferroptosis that was characterized by mitochondrial damage, increased reactive oxygen species (ROS) release, increased total iron and iron ion contents, decreased expression of ferroptosis marker gene recombinant glutathione peroxidase 4 (GPX4), increased expression of acyl-CoA synthetase long chain family member 4 (ACSL4), and enhanced activation of hypoxia inducible factor-1α (HIF-1α), induced nitric oxide synthase (iNOS) and vascular endothelial growth factor (VEGF) in the HIF-1 signaling pathway. Treatment with MXSGD effectively reduced intracellular viral load, while reducing ROS, total iron and ferrous ion contents, repairing mitochondrial results and inhibiting the expression of cellular ferroptosis and the HIF-1 signaling pathway. Finally, based on animal experiments, it was found that MXSGD effectively alleviated pulmonary congestion, edema and inflammation in IAV-infected mice, and inhibited the expression of ferroptosis-related protein and the HIF-1 signaling pathway in lung tissues.
Animals
;
Mice
;
Ferroptosis
;
Network Pharmacology
;
Reactive Oxygen Species
;
Vascular Endothelial Growth Factor A
;
Influenza A virus
;
Iron
;
Hypoxia
8.Research progress of CD4+T cells in influenza virus infection-induced cytokine storm and acute lung injury
Jiawang HUANG ; Xinyue MA ; Mengchen ZHU ; Weirong LIU ; Yulu CHEN ; Ling LI
Chinese Journal of Immunology 2023;39(12):2666-2671
As the main weapon of cellular immunity,CD4+ T cells play a vital role in controlling and eliminating infections,and are an important barrier for the body to resist infections.Respiratory tract infectious diseases caused by influenza virus infection have extremely high infectivity,morbidity and mortality.The infection mechanism is relatively complicated and has not been fully ex-plained.The exuberant immune response induced by the body after influenza virus infection is described as a"cytokine storm"which is related to pro-inflammatory cytokines and tissue damage,which may eventually lead to acute lung injury.Therefore,this article sum-marizes the current research progress,focusing on the mechanism of CD4+T cells in the cytokine storm induced by influenza virus in-fection and the impact of acute lung injury,providing relevant ideas and theoretical guidance for follow-up research,with a view to the disease caused by influenza virus bring new and effective methods of diagnosis and treatment.
9.A novel inhibitor of N 6-methyladenosine demethylase FTO induces mRNA methylation and shows anti-cancer activities.
Guoyou XIE ; Xu-Nian WU ; Yuyi LING ; Yalan RUI ; Deyan WU ; Jiawang ZHOU ; Jiexin LI ; Shuibin LIN ; Qin PENG ; Zigang LI ; Hongsheng WANG ; Hai-Bin LUO
Acta Pharmaceutica Sinica B 2022;12(2):853-866
N 6-methyladenosine (m6A) modification is critical for mRNA splicing, nuclear export, stability and translation. Fat mass and obesity-associated protein (FTO), the first identified m6A demethylase, is critical for cancer progression. Herein, we developed small-molecule inhibitors of FTO by virtual screening, structural optimization, and bioassay. As a result, two FTO inhibitors namely 18077 and 18097 were identified, which can selectively inhibit demethylase activity of FTO. Specifically, 18097 bound to the active site of FTO and then inhibited cell cycle process and migration of cancer cells. In addition, 18097 reprogrammed the epi-transcriptome of breast cancer cells, particularly for genes related to P53 pathway. 18097 increased the abundance of m6A modification of suppressor of cytokine signaling 1 (SOCS1) mRNA, which recruited IGF2BP1 to increase mRNA stability of SOCS1 and subsequently activated the P53 signaling pathway. Further, 18097 suppressed cellular lipogenesis via downregulation of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and C/EBPβ. Animal studies confirmed that 18097 can significantly suppress in vivo growth and lung colonization of breast cancer cells. Collectively, we identified that FTO can work as a potential drug target and the small-molecule inhibitor 18097 can serve as a potential agent against breast cancer.
10.Cellular FLICE-like inhibitory protein alleviates myocardial ischemia/reperfusion injury via inhibiting necroptosis
Di LIU ; Hui WU ; Jun YANG ; Jian YANG ; Jiawang DING ; Jing ZHANG ; Yunzhao LI ; Gang ZHOU ; Dong ZHANG
Chinese Journal of Emergency Medicine 2022;31(3):349-355
Objective:To explore the regulatory effect of cellular FLICE-like inhibitory protein (cFLIP) on myocardial ischemia-reperfusion injury based on the RIPK1/RIPK3/MLKL-mediated necroptosis pathway.Methods:The cardiomyocyte hypoxia/reoxygenation (H/R) model was constructed by hypoxia for 4 h/reoxygenation for 12 h, and the rat ischemia reperfusion (I/R) model was constructed by ligating the left anterior descending artery for 30 min and reperfusion for 3 h. CCK-8 method was used to detect the viability of cardiomyocytes in each group. DAPI/PI double staining was used to observe changes in necrosis rate of myocardial cell. STRING database was used to predict the protein interaction network of cFLIP. TTC staining was used to detect the area of myocardial infarction in each group of rats, and the protein expression of cFLIPL, cFLIPS, p-RIPK1, p-RIPK3 and p-MLKL were detected by Western blot.Results:In cardiomyocyte H/R injury and myocardial tissue I/R injury, the protein expressions of cFLIPL and cFLIPS were significantly down-regulated, while the levels of p-RIPK1, p-RIPK3 and p-MLKL were increased significantly. Up-regulating the protein expression of cFLIPL and cFLIPS could significantly reduce the damage of cardiomyocytes and the rate of cell necrosis induced by H/R, and decrease the area of myocardial infarction caused by I/R. STRING database results showed that cFLIP had direct protein interactions with RIPK1 and RIPK3. Overexpression of cFLIP in cardiomyocyte and myocardial tissue significantly inhibited H/R or I/R induced the phosphorylation levels of RIPK1, RIPK3 and MLKL.Conclusions:Overexpression of cFLIP can significantly inhibit the RIPK1/RIPK3/MLKL-mediated necroptosis, thereby reducing myocardial cell damage and decreasing the area of myocardial infarction.


Result Analysis
Print
Save
E-mail