1.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
2.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
3.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
4.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
5.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
6.NRF2 nuclear translocation and interaction with DUSP1 regulate the osteogenic differentiation of murine mandibular osteoblasts stimulated with Porphyromonas gingivalis lipopolysaccharide.
Xufei YU ; Jiaqi BAO ; Yingming WEI ; Yuting YANG ; Wenlin YUAN ; Lili CHEN ; Zhongxiu WANG
Journal of Zhejiang University. Science. B 2025;26(9):881-896
BACKGROUND: Periodontitis is characterized by alveolar bone resorption, aggravated by osteoblast dysfunction, and associated with intracellular oxidative stress linked to the nuclear factor erythroid 2-related factor 2 (NRF2) level. We evaluated the molecular mechanism of periodontitis onset and development and the role of NRF2 in osteogenic differentiation. METHODS: Primary murine mandibular osteoblasts were extracted and exposed to Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) or other stimuli. Reactive oxygen species (ROS) and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) staining were used to detect intracellular oxidative stress. Alkaline phosphatase staining and alizarin red S staining were used to detect the osteogenic differentiation of osteoblasts. Immunofluorescence and western blotting were used to determine the changes in the mitogen-activated protein kinase (MAPK) pathway and related molecule activities. Immunofluorescence colocalization and co-immunoprecipitation were performed to examine the nuclear translocation of NRF2 and its interaction with dual-specific phosphatase 1 (DUSP1) in cells. RESULTS: Ligated tissue samples showed higher alveolar bone resorption rate and lower NRF2 level than healthy periodontal tissue samples. Pg-LPS increased intracellular oxidative stress levels and inhibited osteogenic differentiation, whereas changes in NRF2 expression were correlated with changes in the oxidative stress and osteogenesis rate. NRF2 promoted the dephosphorylation of the MAPK pathway by nuclear translocation and the upregulation of DUSP1 expression, thus enhancing the osteogenic differentiation capacity of mandibular osteoblasts. The interaction between NRF2 and DUSP1 was observed. CONCLUSIONS: NRF2 and its nuclear translocation can regulate the osteogenic differentiation of mandibular osteoblasts under Pg-LPS conditions by interacting with DUSP1 in a process linked to the MAPK pathway. These findings form the basis of periodontitis treatment.
Animals
;
NF-E2-Related Factor 2/physiology*
;
Lipopolysaccharides/pharmacology*
;
Osteoblasts/drug effects*
;
Mice
;
Porphyromonas gingivalis/chemistry*
;
Cell Differentiation
;
Osteogenesis
;
Dual Specificity Phosphatase 1/metabolism*
;
Mandible/cytology*
;
Reactive Oxygen Species/metabolism*
;
Oxidative Stress
;
Periodontitis/metabolism*
;
Cells, Cultured
;
Male
;
Cell Nucleus/metabolism*
7.Strontium-Alix interaction enhances exosomal miRNA selectively loading in synovial MSCs for temporomandibular joint osteoarthritis treatment.
Wenxiu YUAN ; Jiaqi LIU ; Zhenzhen ZHANG ; Chengxinyue YE ; Xueman ZHOU ; Yating YI ; Yange WU ; Yijun LI ; Qinlanhui ZHANG ; Xin XIONG ; Hengyi XIAO ; Jin LIU ; Jun WANG
International Journal of Oral Science 2025;17(1):6-6
The ambiguity of etiology makes temporomandibular joint osteoarthritis (TMJOA) "difficult-to-treat". Emerging evidence underscores the therapeutic promise of exosomes in osteoarthritis management. Nonetheless, challenges such as low yields and insignificant efficacy of current exosome therapies necessitate significant advances. Addressing lower strontium (Sr) levels in arthritic synovial microenvironment, we studied the effect of Sr element on exosomes and miRNA selectively loading in synovial mesenchymal stem cells (SMSCs). Here, we developed an optimized system that boosts the yield of SMSC-derived exosomes (SMSC-EXOs) and improves their miRNA profiles with an elevated proportion of beneficial miRNAs, while reducing harmful ones by pretreating SMSCs with Sr. Compared to untreated SMSC-EXOs, Sr-pretreated SMSC-derived exosomes (Sr-SMSC-EXOs) demonstrated superior therapeutic efficacy by mitigating chondrocyte ferroptosis and reducing osteoclast-mediated joint pain in TMJOA. Our results illustrate Alix's crucial role in Sr-triggered miRNA loading, identifying miR-143-3p as a key anti-TMJOA exosomal component. Interestingly, this system is specifically oriented towards synovium-derived stem cells. The insight into trace element-driven, site-specific miRNA selectively loading in SMSC-EXOs proposes a promising therapeutic enhancement strategy for TMJOA.
MicroRNAs/metabolism*
;
Mesenchymal Stem Cells/drug effects*
;
Osteoarthritis/drug therapy*
;
Exosomes/drug effects*
;
Strontium/pharmacology*
;
Synovial Membrane/cytology*
;
Humans
;
Animals
;
Temporomandibular Joint Disorders/therapy*
;
Temporomandibular Joint
8.Effects of isocaloric high-fat diet on energy metabolism and endurance exercise capacity in SD rats
Shuai CHEN ; Xiangyuan DENG ; Hedong LANG ; Ruiliang ZHANG ; Xin RAO ; Jiaqi YUAN ; Jundong ZHU ; Yu QIN ; Mantian MI
Journal of Army Medical University 2024;46(9):940-951
Objective To investigate the effects of a 45%high-fat diet(HFD)with isocaloric intake on energy metabolism and endurance exercise capacity in SD rats.Methods Twenty-four male SD rats were randomly divided into normal chow diet group(CON),HFD group,normal chow diet+exercise training group(CONT),and HFD+exercise training group(HFDT).The CON and CONT groups received normal chow diet,while the HFD and HFDT groups received a 45%high-fat diet with isocaloric intake.The HFDT and CONT groups underwent an endurance training of moderate-intensity running for 6 weeks.Body weight,fat mass,and lean mass were measured weekly.Energy expenditure and basal metabolic rate during rest and exercise states were measured using Pheno Master/Calo Treadmill system.Blood glucose,lipids,and creatine kinase levels were detected after the exhaustion test.Results In 6 weeks after intervention,the endurance exercise capacity was significantly enhanced in the HFDT group than the CONT group(P<0.05).There were no obvious differences in body weight and body composition among the groups under isoenergetic feeding conditions.At rest,no statistical differences were observed in total energy expenditure and basal metabolic rate among the groups.However,prior to the 4th week,the CON group primarily metabolized carbohydrates while the HFD group primarily metabolized fats.But the carbohydrate metabolism was decreased and then increased,and the substrate metabolism rates eventually reached similar levels between the 2 groups on the 5th to 6th week.The HFDT group primarily metabolized fats while the CONT group primarily metabolized carbohydrates,with significant differences persisting after 6 weeks of training(P<0.05).HFD led to elevated levels of serum cholesterol,triglycerides(TG),and high-density lipoprotein cholesterol(HDL-C),but,endurance training resulted in decreased lipid levels in the HFDT group,accompanied by an increase inβ-hydroxybutyrate(βHB)level(P<0.05).Isoenergetic diets had no significant differences in their effects on liver and kidney function or muscle damage indicators.Conclusion An isoenergetic HFD can improve fat utilization ability and extend endurance exercise time in rats without altering body composition or affecting liver and kidney function.
9.Quercetin improves hepatic lipid accumulation by up-regulating lipolysis and lipophagy pathways
Yan ZHANG ; Yilin YANG ; Jiaqi YUAN ; Mantian MI ; Yu QIN
Journal of Army Medical University 2024;46(20):2301-2312
Objective To investigate the effect and mechanism of quercetin (QUE)in improving lipid accumulation in hepatocytes by regulating lipolysis and lipophagy pathway.Methods The human hepatocyte cell line 5 (HHL-5)was induced by palmitic acid (PA)to establish a steatogenic hepatocyte model.Quercetin at different concentrations (5,10,20 and 40 μmol/L)has been utilized to interfere with HHL-5 cells for 24 h,and the experiment was divided into six groups:control group,PA group,PA+QUE5 group,PA+QUE10 group,PA+QUE20 groupand PA+QUE40 group.In order to determine the influence of lipophagy on QUE effect,3-methyladenine (3-MA)was used to block autophagy,and HHL-5 cells were divided into the control,PA,PA+QUE40,3-MA,PA+3-MA and PA+3-MA+QUE40 groups.The contents of triglyceride (TG),accumulations of lipid droplets,expression of lipolysis and lipophagy related molecules,and degree of co-localization,and expression level of substrate of autophagy P62 were detected in above 2 types of experimental groups.Results Compared with the control group,the TG content and the lipid accumulation were significantly increased,the protein levels,average fluorescence intensities and colocalization degree of lipolysis related molecules adipose triglycerides lipase(ATGL)and comparative gene identification-58(CGI58),and lipophagy related molecules Ras-related protein 7(RAB7)and microtubule-associated protein 1 light chain 3 beta (LC3β)were significantly decreased,while the expression of P62 was enhanced in HHL-5 cells in the PA group (all P<0.05 ).Compared with the PA group,the triglyceride content and the degree of lipid accumulation in the PA+QUE40 group were significantly decreased,and the protein expression level,average fluorescence intensity and co-localization degree of lipolysis and lipophagy related molecules were significantly increased,while P62 was significantly decreased (P<0.05).When 3-MA was added to the steatogenic hepatocytes to inhibit autophagy,the improvement effect of QUE on lipid accumulation and the regulation of lipolysis and liphagy related molecules in steatogenic hepatocytes were neutralized.Conclusion QUE alleviates lipid accumulation in HHL-5 cells by promoting the expression and interaction of molecules related to lipolysis and lipophagy pathways.However,these effects can be weakened by the autophagy inhibitor 3-MA.
10.Research progress of glutathione peroxidase 4/glutathione ferroptosis defense system in the treatment of triple-negative breast cancer
Yuan ZHOU ; Yang LYU ; Xuerui LI ; Xiaoyue YANG ; Jiaqi SONG ; Huixia LU
Journal of Xinxiang Medical College 2024;41(10):991-995
Ferroptosis is a way of cell death with lipid peroxides as the core.Cells can reduce ferroptosis sensitivity by relying on glutathione peroxidase 4(GPX4)/glutathione(GSH)antioxidant systems.Triple-negative breast cancer(TNBC)cells are more dependent on the intracellular antioxidant mechanism than normal cells,thus induction of ferroptosis based on the GPX4/GSH system has shown bright anti-TNBC prospects.This paper reviews the recent research on TNBC treatment with ferroptosis in the background of GPX4/GSH,in order to provide references for the clinical treatment of TNBC.

Result Analysis
Print
Save
E-mail