1.Eukaryotic expression,purification and immunoefficacy evaluation of ferritin nan-oparticles of dengue virus type Ⅱ
Junduo BAO ; Xiangshu QIU ; Yan GAO ; Jiaqi ZHANG ; Xiao LI ; Xin JIN ; Huijun LU ; Ningyi JIN
Chinese Journal of Veterinary Science 2024;44(6):1120-1126
The E protein of dengue virus type Ⅱ was presented on ferritin of Helicobacter pylori to construct a novel dengue nanoparticle vaccine candidate,and the immunological indexes of the vac-cine were evaluated,aiming to provide new ideas for the development of dengue vaccine.The re-combinant plasmid of E-Ferritin was optimized and synthesized,and then transfected into HEK-293F cells.The recombinant protein was expressed,identified,purified and analyzed.Mice were im-munized with E-Ferritin nanoparticle vaccine by intramuscular injection on the hind limbs on the day 0,14 and 28.ELISA,neutralization test,flow cytometry and lymphocyte proliferation test were used to detect the levels of specific antibodies,neutralizing antibodies,CD3+,CD4+and CD8+T lymphocytes in spleen cells and the proliferation of spleen lymphocytes after specific stimulation.The target protein with a size of about 69 kDa was expressed in the cells with a single band.The purified protein concentration was 0.407 g/L,and the purity was 82.32%.The results from transmission electron microscopy showed that E-Ferritin protein could be recombined into a particle structure with a particle size of about 50 nm.The results of mouse immune experiments showed that E-Ferritin protein had good immunogenicity.The average specific antibody titer of E-ferritin protein in serum was 1∶92 160 after immunization 42 d.The main subclass of antibody was IgGl.The results of flow cytometry showed that E-Ferritin as an immunogen could induce higher levels of CD4+and CD8+T lymphocyte immune response.In lymphocyte proliferation test,the level of specific stimulation in the vaccine group was significantly higher than that in the non-specific stimulation group.In conclusion,the dengue virus envelope protein ferritin nanoparticle vaccine constructed in this study has good immunogenicity,which can provide reference for the de-velopment of new dengue vaccine candidates.
2.Discussion on Traditional Chinese Medicine Theory and Pharmacological Mechanism of Xuanfei Baidu Prescription in Treatment of Viral Pneumonia
Yihao ZHANG ; Xin PENG ; Zheyu LUAN ; Yunfan WANG ; Jiaqi SHANG ; Jihong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(19):214-224
Viral pneumonia (VP) is an inflammatory disease caused by one or more viruses that infect the upper respiratory tract and spread downward. Causing varying degrees of pulmonary parenchymal damage, VP poses a serious threat to the society and public health. The treatment of VP now faces the dilemma of drug shortage, since Western medicine can only alleviate symptoms and lacks specific treatment methods. In traditional Chinese medicine (TCM), VP is assigned as an epidemic disease, with the etiology attributed to epidemic toxin and six excesses and the pathological factors of dampness, heat, toxin, deficiency, and stasis. The basic pathogenesis of VP is Yin-Yang imbalance, dysfunction of Zang-Fu organs, and healthy Qi deficiency. Accordingly, the treatment should follow the principle of replenishing healthy Qi and expelling pathogen. The treatment method of VP is mainly developed based on syndrome differentiation of six meridians, defense-Qi-nutrient-blood, and triple energizer. Xuanfei Baidu prescription (XFBD) is an effective prescription developed by Academician ZHANG Boli and Professor LIU Qingquan by literature research and selection of multi-component Chinese medicine. It is the product of modern research combined with TCM. XFBD is modified from Maxing Shigantang, Maxing Yigantang, Tingli Dazao Xiefeitang, Qianjin Weijingtang, and Buhuanjin Zhengqisan. It is mainly used to treat epidemic diseases with the syndrome of dampness toxin stagnating in the lung, with the effects of ventilating lung and resolving dampness, clearing heat and expelling pathogen, purging lung, and removing toxin, demonstrating the potential for the prevention and treatment of VP. This paper reviews the research progress of XFBD in combating VP in terms of the prescription composition, compatibility ideas, indications, and clinical new applications, as well as the pharmacological mechanisms of inhibiting virus, reducing inflammation, regulating immune system, ameliorating pulmonary fibrosis, and modulating intestinal flora. In addition, we put forward our thoughts and suggestions on the problems in the research, with a view to informing the clinical use of drugs and the basic research on the treatment of VP including COVID-19.
3.Research progress on the mechanism of traditional Chinese medicine intervening in esophageal cancer by microRNA regulation
Zhiwen SHEN ; Liqun LI ; Mingyao XU ; Xin LIU ; Jing HUANG ; Xiaoning ZHANG ; Jiaqi YIN ; Sheng XIE
China Pharmacy 2024;35(8):1016-1022
Esophageal cancer (EC) is a common malignant tumor of the digestive system with an extremely poor prognosis. MicroRNA (miRNA) is an important regulator in tumor occurrence and development, and can participate in malignant biological behaviors such as tumor cell proliferation, invasion, metastasis and apoptosis. Traditional Chinese medicine has the characteristics of accurate curative effects, wide range of effects, and few side effects. The review uses miRNA as the entry point to systematically elaborate on the mechanism of traditional Chinese medicine-mediated miRNA intervening in EC. The results showed that active ingredients of traditional Chinese medicine (including curcumin, Tussilago farfara polysaccharides, Atractylodes macrocephala polysaccharides and ophiopogonin B) and Dougen guanshitong oral liquid could up-regulate the expressions of miRNAs such as miRNA-532-3p (miR-532-3p), miR-551b-3p, miR-99a, miR-34a, miR-199a-3p and miR-377; and the active ingredients/parts of traditional Chinese medicine (including chrysin and Actinidia arguta extract), and Chinese herbal formulas (including Chaihu shugan san combined with Xuanfu daizhe decoction and Modified jupi zhuru decoction) could down-regulate the expressions of miRNAs such as miR-199a-3p, miR-451 and miR-21, which could regulate the expressions of signaling pathways (phosphoinositide 3-kinase/protein kinase B, etc.) or their downstream protein(zinc-finger and homeobox protein 1, etc.) or enzymes(thymidine kinase-1, etc.), inhibit the proliferation, invasion and metastasis of EC cells and induce apoptosis, thereby ultimately achieving the purpose of preventing the disease from aggravating.
4.Biomechanical analysis on Vancouver BI periprosthetic femoral fractures fixed by a customized anatomical plate system
Jiaqi WANG ; Xiaozhong LUO ; Yi TONG ; Xiaobo LU ; Weixiang SHI ; Xin ZHOU ; Gang WU ; Yong DING ; Caidong ZHANG
Chinese Journal of Tissue Engineering Research 2024;28(24):3807-3813
BACKGROUND:At present,the use of a locking bone plate combined with steel wire or steel cable for the treatment of periprosthetic femoral fracture often adopts monocortical fixation,which is not stable and the proximal end of the bone cannot be achieved anatomically fitted by plate.The customized anatomical plate system can effectively solve this problem. OBJECTIVE:To explore the biomechanical strength of a customized anatomical plate system in fixation of Vancouver BI periprosthetic femoral fracture. METHODS:CT thin layer scanning data of normal femurs of 1 006 cases were selected and input into the MIMICS 21.0 software to establish the three-dimensional reconstruction model of the femur,which was set as the three-dimensional reconstruction group.56 complete human femoral specimens were selected as the femoral specimen group.The measured results of the two groups for femoral anatomical appearance were compared.If there was no significant difference between the two groups,the approximate appearance of a customized anatomical plate system was designed based on the measurement results in MIMICS 21.0 software and NX11.0 software.The customized anatomical plate system was designed and prepared according to the above measurement results.Eight pairs of frozen human femurs were selected to make Vancouver BI periprosthetic femoral fracture,which of the left were thin layer scanned by dual-source CT to obtain data.The data were transferred to determine the customized anatomical plate system model by the above design software.Eight sets of customized anatomical plate systems were ultimately produced,relying on the instrument company.The eight pairs of models were numbered 1-8.The left side was fixed with the customized anatomical plate system(customized anatomical plate system group);the right side was fixed with a metal locking plate system-large locking plate(claw plate group).L1-L4 and R1-R4 were subjected to vertical short-cycle loading test and vertical loading test.L5-L8 and R5-R8 were subjected to horizontal short-cycle loading test and four-point bending test.The vertical loading test and four-point bending test were used to collect bending load,bending displacement,and bending strain.Two short cycle loading tests were used to collect strain displacement to compare the maximum load,maximum displacement,bending stiffness,and short-period displacement resistance of the two kinds of bone plates. RESULTS AND CONCLUSION:(1)There were no significant differences in all indexes between the three-dimensional reconstruction group and the femoral specimen group(P>0.05).Individual customized anatomical plate system was designed based on the measurement results combined with digital software.(2)In the vertical loading test,the maximum load was higher(P=0.015),the maximum bending displacement was smaller(P=0.014),and the bending stiffness was higher(P=0.005)in the customized anatomical plate system group compared with the claw plate group.(3)In the four-point bending test,the maximum load was higher(P=0.023),the bending stiffness was higher(P=0.005),and the maximum bending displacement was not significant(P=0.216>0.05)in the customized anatomical plate system group compared with the claw plate group.(4)In the vertical short-cycle loading test,the average level of bending displacement in the customized anatomical plate system group(0.23±0.10 mm)was significantly lower than that in the claw plate group(0.44±0.02 mm)(P<0.05).(5)There was no significant difference in the average level of bending displacement between the two groups in the horizontal short cycle loading test(P>0.05).(6)It is concluded that the customized anatomical plate system has personalized anatomical characteristics,and the fixation of Vancouver BI periprosthetic femoral fracture is more stable,which has certain significance for clinical treatment.
5.Role of NF-κB Signaling Pathway in "Reflux Esophagitis-esophageal Cancer" and Traditional Chinese Medicine Intervention:A Review
Mingyao XU ; Liqun LI ; Xin LIU ; Zhiwen SHEN ; Xiaoning ZHANG ; Jing HUANG ; Jiaqi YIN ; Zhu LIU ; Sheng XIE
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(2):221-233
Reflux esophagitis is an inflammatory disease of esophageal mucosa damage caused by the reflux of gastric contents into the esophagus. Its incidence is on the rise, and it has become an important precancerous disease of esophageal cancer. Studies have shown that the continuous inflammatory response stimulates the esophageal mucosa, causing abnormal proliferation of esophageal epithelial cells and damage to esophageal mucosal tissue, which eventually leads to the occurrence of heterogeneous hyperplasia and even carcinogenesis. The nuclear transcription factor-kappa B (NF-κB) signaling pathway is one of the most classical inflammatory and cancer signaling pathways. It has been found that abnormal activation of the NF-κB signaling pathway is crucial to the development and prognosis of reflux esophagitis and esophageal cancer. It is widely involved in the proliferation, autophagy, apoptosis, and inflammatory response of esophageal epithelial cells and tumor cells, accelerating the transformation of reflux esophagitis to esophageal cancer and making it a potential target for the treatment of reflux esophagitis and esophageal cancer. Currently, there is no specific treatment for reflux esophagitis and esophageal cancer, and large side effects often appear. Therefore, finding a promising and safe drug remains a top priority. In recent years, traditional Chinese medicine scholars have conducted a lot of research on NF-κB signaling pathway, and the results indicate that NF-κB signaling pathway is an important potential target for traditional Chinese medicine to prevent and treat reflux esophagitis and esophageal cancer, but there is a lack of comprehensive and systematic elaboration. Therefore, this paper summarized the relevant studies in recent years, analyzed the relationship among NF-κB signaling pathway, reflux esophagitis, esophageal cancer, and transformation from inflammation to cancer, and reviewed the research literature on the regulation of the NF-κB signaling pathway in traditional Chinese medicine to prevent and treat reflux esophagitis and esophageal cancer, so as to provide new ideas for the prevention and treatment of reflux esophagitis and esophageal cancer.
6.Effects of isocaloric high-fat diet on energy metabolism and endurance exercise capacity in SD rats
Shuai CHEN ; Xiangyuan DENG ; Hedong LANG ; Ruiliang ZHANG ; Xin RAO ; Jiaqi YUAN ; Jundong ZHU ; Yu QIN ; Mantian MI
Journal of Army Medical University 2024;46(9):940-951
Objective To investigate the effects of a 45%high-fat diet(HFD)with isocaloric intake on energy metabolism and endurance exercise capacity in SD rats.Methods Twenty-four male SD rats were randomly divided into normal chow diet group(CON),HFD group,normal chow diet+exercise training group(CONT),and HFD+exercise training group(HFDT).The CON and CONT groups received normal chow diet,while the HFD and HFDT groups received a 45%high-fat diet with isocaloric intake.The HFDT and CONT groups underwent an endurance training of moderate-intensity running for 6 weeks.Body weight,fat mass,and lean mass were measured weekly.Energy expenditure and basal metabolic rate during rest and exercise states were measured using Pheno Master/Calo Treadmill system.Blood glucose,lipids,and creatine kinase levels were detected after the exhaustion test.Results In 6 weeks after intervention,the endurance exercise capacity was significantly enhanced in the HFDT group than the CONT group(P<0.05).There were no obvious differences in body weight and body composition among the groups under isoenergetic feeding conditions.At rest,no statistical differences were observed in total energy expenditure and basal metabolic rate among the groups.However,prior to the 4th week,the CON group primarily metabolized carbohydrates while the HFD group primarily metabolized fats.But the carbohydrate metabolism was decreased and then increased,and the substrate metabolism rates eventually reached similar levels between the 2 groups on the 5th to 6th week.The HFDT group primarily metabolized fats while the CONT group primarily metabolized carbohydrates,with significant differences persisting after 6 weeks of training(P<0.05).HFD led to elevated levels of serum cholesterol,triglycerides(TG),and high-density lipoprotein cholesterol(HDL-C),but,endurance training resulted in decreased lipid levels in the HFDT group,accompanied by an increase inβ-hydroxybutyrate(βHB)level(P<0.05).Isoenergetic diets had no significant differences in their effects on liver and kidney function or muscle damage indicators.Conclusion An isoenergetic HFD can improve fat utilization ability and extend endurance exercise time in rats without altering body composition or affecting liver and kidney function.
7.Prediction and experimental verification of network target of celastrol in alleviating hepatic inflammatory injuries
Jiaqi XIN ; Lve SUN ; Yongsheng ZHAO ; Mengxi JIANG ; Hui ZHAO
International Journal of Traditional Chinese Medicine 2024;46(5):614-621
Objective:To investigate the action targets and mechanism of celastrol in alleviating liver inflammatory injuries using network pharmacology; To verify the key targets through liver ischemia-reperfusion injury inducing inflammation mouse model.Methods:The targets of celastrol were integrated by searching SymMap, BATMAN-TCM, TCMSP, HIT 2.0, LigTMap, SEA, SwissTarget, Super-PRED, STITCH databases. The molecular targets of hepatic inflammatory injuries were investigated by GeneCards and DisGeNET databases. The intersection of drug targets and disease targets was obtained by Venn diagram to obtain the possible targets of celastrol in alleviating hepatic inflammatory diseases. Cytoscape 3.9.1 software was used to analyze the key targets of protein interaction (PPI) networks based on STRING database, and enrichment analysis was conducted through DAVID database. Based on the key targets, the ceRNA network was mapped by retrieving the starBase database. Molecular docking was used to evaluated the binding of celastrol with the key target proteins. The mice were divided into sham-operation solvent group, sham- operation medication group, model group, and Tripterygium wilfordii extract low- (0.1 mg/kg), medium- (0.3 mg/kg), and high- (1 mg/kg) dosage groups according to body weight, with 3-4 mice in each group. After 7 days of corresponding drug intervention, except for the sham-operation solvent group and sham-operation medication group, other groups were prepared with ischemia-reperfusion induced liver inflammation mouse models. The serum transaminase levels in mice were detected; the pathological morphology of mouse liver tissue was observed using HE staining; the expressions of IL-6 and TNF-α were detected in liver tissue using immunohistochemistry staining.Results:The key targets of celastrol in alleviating liver inflammation were inflammatory cytokines such as IL6 and TNF. The analysis of functional enrichment results showed that the key signaling pathways of Tripterygium wilfordii extract in reducing liver inflammatory injury included inflammatory response, cell apoptosis and proliferation, HIF1, and other pathways. Triptolide pretreatment could reduce serum aminotransferase level ( P<0.01) and liver inflammatory factors expression such as IL-6 and TNF-α ( P<0.05, P<0.01) after hepatic ischemia-reperfusion. Conclusion:Celastrol can alleviate hepatic ischemia-reperfusion injury, and its mechanism is closely related to the reduction of inflammatory factors such as IL-6 and TNF-α and the alleviation of hepatic inflammatory injury.
8.Protective mechanism of Paeoniae Radix Alba against chemical liver injury based on network pharmacology, molecular docking, and in vitro experiments
Shuangqiao Liu ; Xin Liu ; Sijia Jiang ; Min Fu ; Jinxi Hu ; Jiaqi Liu ; Xiaoxu Fan ; Yingtong Feng ; Shujing Zhang ; Jingxia Wang
Journal of Traditional Chinese Medical Sciences 2024;11(1):55-66
Objective:
To explore and validate the potential targets of Paeoniae Radix Alba (P. Radix, Bai Shao) in protecting against chemical liver injury through network pharmacology, molecular docking technology, and in vitro cell experiments.
Methods:
Network pharmacology was used to identify the common potential targets of P. Radix and chemical liver injury. Molecular docking was used to fit the components, which were subsequently verified in vitro. A cell model of hepatic fibrosis was established by activating hepatic stellate cell (HSC)-LX2 cells with 10 ng/mL transforming growth factor-β1. The cells were exposed to different concentrations of total glucosides of paeony (TGP), the active substance of P. Radix, and then evaluated using the cell counting kit-8 assay, enzyme-linked immunosorbent assay, and western blot.
Results:
Analysis through network pharmacology revealed 13 key compounds of P. Radix, and the potential targets for preventing chemical liver injury were IL-6, AKT serine/threonine kinase 1, jun proto-oncogene, heat shock protein 90 alpha family class A member 1 (HSP90AA1), peroxisome proliferator activated receptor gamma (PPARG), PTGS2, and CASP3. Gene Ontology (GO) enrichment analysis indicated the involvement of response to drugs, membrane rafts, and peptide binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the main pathways involved lipid and atherosclerosis and chemical carcinogenesis-receptor activation. Paeoniflorin and albiflorin exhibited strong affinity for HSP90AA1, PTGS2, PPARG, and CASP3. Different concentrations of TGP can inhibit the expression of COL-Ⅰ, COL-Ⅲ, IL-6, TNF-α, IL-1β, HSP-90α, and PTGS2 while increasing the expression of PPAR-γ and CASP3 in activated HSC-LX2 cells.
Conclusion
P. Radix primarily can regulate targets such as HSP90AA1, PTGS2, PPARG, CASP3. TGP, the main active compound of P. Radix, protects against chemical liver injury by reducing the inflammatory response, activating apoptotic proteins, and promoting the apoptosis of activated HSCs.
9.The improvement effect and metabolic mechanism of Echinops sphaerocephalus extract on osteoporosis model rat
Xin DONG ; Jiaqi WANG ; Xiuyan ZHANG ; Zhongyao ZHANG ; Jingkun LU ; Jianping GAO ; Peifeng XUE
China Pharmacy 2023;34(4):413-418
OBJECTIVE To study the intervention effect and metabolic mechanism of Mongolian medicine Echinops sphaerocephalus extract on D-galactose-induced osteoporosis. METHODS Thirty-six 12-week-old male Wistar rats were selected and randomly divided into blank group, model group, Gushukang group, E. sphaerocephalus high-dose, medium-dose and low- dose groups, with 6 rats in each group. Except for blank group, other groups were intraperitoneally injected with D-galactose at 120 mg/kg per day. After 8 weeks of continuous injection, E. sphaerocephalus high-dose, medium-dose and low-dose groups were given drugs intragastrically at dose of 878, 439, 219.5 mg/kg, respectively. Gushukang group was given Gushukang 105.1 mg/kg intragastrically, once a day, for consecutive 8 weeks. After last administration, blood was collected from the abdominal aorta. Enzyme-linked immunosorbent assay was used to measure the contents of bone metabolism indexes [hydroxyproline (HYP), alkaline phosphatase (ALP)] and oxidative stress indexes [total antioxidant capacity (TAOC), superoxide dismutase (SOD), malondialdehyde (MDA)] in serum of rats. Positron emission tomography/computedtomography (PET/CT) was used to analyze the changes of bone microstructure in right tibia bone. Meanwhile, metabolomic technology was used to study the regulation effect of E. sphaerocephalus on osteoporosis model rats. RESULTS Compared with blank group, HYP, ALP, MDA, ratio of bone surface to bone volume (BS/BV), and trabecular separation (Tb·Sp) in model group were significantly increased (P<0.05), while TAOC, SOD, bone mineral density (BMD), bone volume fraction (BVF), trabecular E-mail:Xpfdc153@163.com thickness (Tb·Th) and trabecular number (Tb·N) were significantly decreased (P<0.05). Compared with model group, above indexes of administration groups were all reversed to different extents. The results of metabonomics study showed that after intervened with the extract of E. sphaerocephalus, 18 metabolites such as arachidonic acid, phenylalanine, tyrosine, tryptophan, isoleucine and uric acid in the serum of rats changed significantly, involving 15 metabolic pathways such as arachidonic acid, phenylalanine and tyrosine, of which arachidonic acid metabolism, phenylalanine metabolism and tyrosine metabolism were the main influencing pathways. CONCLUSIONS E. sphaerocephalus extract can effectively improve D-galactose-induced oxidative stress and the deterioration of bone microstructure, which interferes with metabolic pathways such as arachidonic acid metabolism and amino acid metabolism.
10.Clinical efficacy and long-term immunogenicity of an early triple dose regimen of SARS-CoV-2 mRNA vaccination in cancer patients.
Matilda Xinwei LEE ; Siyu PENG ; Ainsley Ryan Yan Bin LEE ; Shi Yin WONG ; Ryan Yong Kiat TAY ; Jiaqi LI ; Areeba TARIQ ; Claire Xin Yi GOH ; Ying Kiat TAN ; Benjamin Kye Jyn TAN ; Chong Boon TEO ; Esther CHAN ; Melissa OOI ; Wee Joo CHNG ; Cheng Ean CHEE ; Carol L F HO ; Robert John WALSH ; Maggie WONG ; Yan SU ; Lezhava ALEXANDER ; Sunil Kumar SETHI ; Shaun Shi Yan TAN ; Yiong Huak CHAN ; Kelvin Bryan TAN ; Soo Chin LEE ; Louis Yi Ann CHAI ; Raghav SUNDAR
Annals of the Academy of Medicine, Singapore 2023;52(1):8-16
INTRODUCTION:
Three doses of SARS-CoV-2 mRNA vaccines have been recommended for cancer patients to reduce the risk of severe disease. Anti-neoplastic treatment, such as chemotherapy, may affect long-term vaccine immunogenicity.
METHOD:
Patients with solid or haematological cancer were recruited from 2 hospitals between July 2021 and March 2022. Humoral response was evaluated using GenScript cPASS surrogate virus neutralisation assays. Clinical outcomes were obtained from medical records and national mandatory-reporting databases.
RESULTS:
A total of 273 patients were recruited, with 40 having haematological malignancies and the rest solid tumours. Among the participants, 204 (74.7%) were receiving active cancer therapy, including 98 (35.9%) undergoing systemic chemotherapy and the rest targeted therapy or immunotherapy. All patients were seronegative at baseline. Seroconversion rates after receiving 1, 2 and 3 doses of SARS-CoV-2 mRNA vaccination were 35.2%, 79.4% and 92.4%, respectively. After 3 doses, patients on active treatment for haematological malignancies had lower antibodies (57.3%±46.2) when compared to patients on immunotherapy (94.1%±9.56, P<0.05) and chemotherapy (92.8%±18.1, P<0.05). SARS-CoV-2 infection was reported in 77 (28.2%) patients, of which 18 were severe. No patient receiving a third dose within 90 days of the second dose experienced severe infection.
CONCLUSION
This study demonstrates the benefit of early administration of the third dose among cancer patients.
Humans
;
SARS-CoV-2
;
COVID-19/prevention & control*
;
Treatment Outcome
;
Neoplasms/drug therapy*
;
Hematologic Neoplasms
;
Vaccination
;
RNA, Messenger
;
Antibodies, Viral
;
Immunogenicity, Vaccine


Result Analysis
Print
Save
E-mail