1.Jujuboside A Improves Cognitive Function in Rat Model of VCI via PI3K/Akt Signaling Pathway
Zixuan HUANG ; Shuo YANG ; Jiaqi ZHOU ; Gengchao ZHANG ; Qiuyun YOU ; Aihua TAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):107-114
ObjectiveTo investigate the effects of jujuboside A (JuA) on the learning and memory abilities and histopathological changes in the rat model of vascular cognitive impairment (VCI) and explore the potential mechanisms by which JuA treats VCI. MethodsA total of 50 male SPF-grade SD rats were randomized into a sham operation group (n=10), a blank control group (n=10), and a modeling group (n=30). The rats in the modeling group underwent bilateral carotid artery ligation (2-VO) for the modeling of VCI. After stabilization, the VCI rats were randomized into model, JuA (20 mg·kg-¹), and donepezil (0.45 mg·kg-¹) groups. After 4 weeks of gavage, the novel object recognition and Morris water maze tests were conducted to evaluate the learning and memory abilities of rats. Nissl staining was employed to evaluate the morphology and number of hippocampal neurons. Real-time PCR was employed to measure the mRNA levels of glycogen synthase kinase-3β (GSK-3β), cAMP response element-binding protein (CREB), B cell lymphoma-2 (Bcl-2), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) in the hippocampal tissue. Western blot was employed to quantify the protein levels of GSK-3β, p-GSK-3β, p-CREB, Bcl-2, PI3K, p-PI3K, Akt, and p-Akt in the hippocampal tissue. ResultCompared with the sham operation group, the model group exhibited declines in the learning and memory abilities (P<0.01), neuronal damage and decreased neurons in the hippocampal CA1 region (P<0.01), up-regulation in the mRNA level of GSK-3β (P<0.01), and down-regulation in the mRNA levels of PI3K, Akt, CREB, and Bcl-2, as well as the protein levels of p-PI3K, p-Akt, p-GSK-3β, p-CREB, and Bcl-2 (P<0.01). In comparison to the model group, both the JuA and donepezil groups demonstrated improvements in the learning and memory abilities (P<0.05, P<0.01), with reduced neuronal damage and increased neurons (P<0.05, P<0.01). In addition, the two groups showed down-regulation in the mRNA level of GSK-3β (P<0.01) and up-regulation in the mRNA levels of PI3K, Akt, CREB, and Bcl-2 and the protein levels of p-PI3K, p-Akt, p-GSK-3β, p-CREB, and Bcl-2 (P<0.05, P<0.01). There were no statistically significant differences between the blank control and sham operation groups in terms of the learning and memory abilities, neuron count, and mRNA and protein levels of PI3K/Akt/GSK-3β pathway-related factors. ConclusionJuA can ameliorate the cognitive impairment in the rat model of VCI by activating the PI3K/Akt signaling pathway, reducing the apoptosis of hippocampal neurons, and alleviating the hippocampal neuronal damage.
2.Effect of Modified Gegen Qinlian Decoction (加味葛根芩连汤) on the Intestinal Mucus Barrier and Intestinal Stem Cell Proliferation and Differentiation in Ulcerative Colitis Model Mice
Jinke HUANG ; Jiaqi ZHANG ; Fengyun WANG ; Xudong TANG
Journal of Traditional Chinese Medicine 2025;66(9):941-947
ObjectiveTo explore the possible mechanism of Modified Gegen Qinlian Decoction (加味葛根芩连汤, MGQD) in the treatment of ulcerative colitis (UC) based on intestinal mucus barrier. MethodsThirty C57BL/6 mice were randomly divided into a control group, a model group and a MGQD group with 10 mice in each. Dextran Sulfate Sodium Salt (DSS) was used to construct the UC model in all groups except for the control group. Meanwhile, mice in the MGQD group were given 20 g/kg of MGQD decoction by gavage according to their body weight, while those in the control group and model group were given 0.2 ml/20 g of pure water by gavage, once a day for 7 consecutive days. On the day following the last gavage, the body weight, disease activity index (DAI) score, spleen weight, and colon length were compared. The pathological changes of the intestinal mucosal tissues were observed by HE staining; the protein expression levels of mucin 2 (MUC2) and leucine-rich repeat G protein-coupled receptor 5 (Lgr5) in the intestinal mucosal tissues were detected by immunofluorescence; the cuprocytes in the intestinal mucosal tissues were detected by AB/PAS staining; and the expression level of Ki67 in the intestinal mucosal tissues was detected by immunohistochemistry. ResultsHE staining showed that the colon mucosal tissue of the mice in the control group was intact. In the model group, the colon mucosal epithelial structure was severely damaged, with a large amount of inflammatory cell infiltration in the mucosal propria. In the MGQD group, the mucosal tissue structure was partially lost, with a small amount of inflammatory cell infiltration.The body weight and colon length of mice in the model group decreased significantly compared to those in the control group, while DAI scores and spleen weight increased, and the levels of MUC2, Ki67, Lgr5 proteins, and the number of goblet cells were significantly reduced (P<0.01). Compared to the model group, the MGQD group had increased body weight of mice, colon length, and decreased DAI scores and spleen weight; the levels of MUC2, Ki67, Lgr5 proteins, and the number of goblet cells were increased (P<0.05 or P<0.01). ConclusionMGQD has a favorable ameliorative effect on UC-related symptoms and pathological tissue damage, and its mechanism of action may be related to the restoration of the prolife-ration and differentiation of intestinal stem cells into goblet cells, thereby promoting the repair of the intestinal mucus barrier.
3.Construction Process and Quality Control Points of the Database for Facial Phenotypes and Clinical Data of Pediatric Growth and Development-related Diseases
Jiaqi QIANG ; Yingjing WANG ; Danning WU ; Runzhu LIU ; Jiuzuo HUANG ; Hui PAN ; Xiao LONG ; Shi CHEN
Medical Journal of Peking Union Medical College Hospital 2025;16(3):552-557
The growth and development of children is an important stage for health, and its monitoringand intervention are related to the long-term development of individuals. The construction of a standardized and multi-dimensional database of pediatric growth and development-related diseases is an important basis for realizing precise diagnosis and treatment and health management. Based on the needs of clinical practice, this study proposes to establish a specialized database of pediatric growth and development-related diseases that integrates facial phenotypes and clinical diagnosis and treatment information. This study elaborates on the construction process, including data sources, data collection content, and the operation and management of the database; and proposes key points for quality control, including the establishment of quality control nodes, database construction standards, and a full-process quality control framework. The above ensure the integrity, logic and effectiveness of the data, so that the database can provide an objective basis for the screening and diagnosis of pediatric growth and development-related diseases. On the basis of scientific data management and strict quality control, the database will help reveal the patterns of children's growth and development, and promote the level of children's health management.
4.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
5.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
6.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
7.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
8.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
9.Research progress on the impact of non-surgical periodontal therapy on glycemic control in diabetic patients with periodontitis
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(11):997-1009
Periodontitis and diabetes have a close bidirectional relationship that is mutually exacerbated through mechanisms including inflammatory factor interplay and metabolic dysregulation. Research has shown that non-surgical periodontal therapy (NSPT), focused on scaling and root planing (SRP), effectively treats periodontitis, enhances glycemic control, and ameliorates systemic inflammation in diabetic patients. This review summarizes the glycemic improvement effects of diverse NSPT modalities (including SRP alone, SRP with adjunctive antimicrobials, and SRP with laser therapy) on patients with diabetes and periodontitis. SRP significantly reduces hemoglobin A1c (HbA1c) levels, while adjunctive antimicrobials and laser therapy considerably potentiate the glucose-lowering efficacy of SRP. Furthermore, we focus on elucidating the underlying regulatory mechanisms for NSPT-mediated glycemic control improvement, encompassing inflammation factor-mediated JNK/IKKβ pathway activation inducing insulin resistance; advanced glycation end products (AGEs)-triggered RAGE-ROS/NF-κB pathway dysregulation leading to pancreatic β-cell dysfunction; gut microbiota dysbiosis-driven TLR4-MyD88/TRIF signaling axis causing insulin resistance; flagellin from periodontal pathogens impairing insulin secretion; and lipopolysaccharide (LPS) of periodontal pathogens disrupting Th17/Treg balance with downstream STAT3/SOCS3 pathway inhibiting insulin signaling. These insights aim to provide novel references for targeted interventions and synergistic management of diabetes with periodontitis. Although current studies reveal potential benefits and partial mechanisms of NSPT, the following problems remain: unelucidated specific effector molecules and pathway networks for glycemic regulation by different NSPT regimens, significant interindividual variability in treatment response, and undetermined long-term stability of adjunctive therapy benefits. Future research should explore combined therapeutic strategies for synergistic efficacy, mechanistically dissect regulatory pathways, identify key targets, and advance precision management of diabetes-periodontitis comorbidities.
10.Role of NF-κB Signaling Pathway in "Reflux Esophagitis-esophageal Cancer" and Traditional Chinese Medicine Intervention:A Review
Mingyao XU ; Liqun LI ; Xin LIU ; Zhiwen SHEN ; Xiaoning ZHANG ; Jing HUANG ; Jiaqi YIN ; Zhu LIU ; Sheng XIE
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(2):221-233
Reflux esophagitis is an inflammatory disease of esophageal mucosa damage caused by the reflux of gastric contents into the esophagus. Its incidence is on the rise, and it has become an important precancerous disease of esophageal cancer. Studies have shown that the continuous inflammatory response stimulates the esophageal mucosa, causing abnormal proliferation of esophageal epithelial cells and damage to esophageal mucosal tissue, which eventually leads to the occurrence of heterogeneous hyperplasia and even carcinogenesis. The nuclear transcription factor-kappa B (NF-κB) signaling pathway is one of the most classical inflammatory and cancer signaling pathways. It has been found that abnormal activation of the NF-κB signaling pathway is crucial to the development and prognosis of reflux esophagitis and esophageal cancer. It is widely involved in the proliferation, autophagy, apoptosis, and inflammatory response of esophageal epithelial cells and tumor cells, accelerating the transformation of reflux esophagitis to esophageal cancer and making it a potential target for the treatment of reflux esophagitis and esophageal cancer. Currently, there is no specific treatment for reflux esophagitis and esophageal cancer, and large side effects often appear. Therefore, finding a promising and safe drug remains a top priority. In recent years, traditional Chinese medicine scholars have conducted a lot of research on NF-κB signaling pathway, and the results indicate that NF-κB signaling pathway is an important potential target for traditional Chinese medicine to prevent and treat reflux esophagitis and esophageal cancer, but there is a lack of comprehensive and systematic elaboration. Therefore, this paper summarized the relevant studies in recent years, analyzed the relationship among NF-κB signaling pathway, reflux esophagitis, esophageal cancer, and transformation from inflammation to cancer, and reviewed the research literature on the regulation of the NF-κB signaling pathway in traditional Chinese medicine to prevent and treat reflux esophagitis and esophageal cancer, so as to provide new ideas for the prevention and treatment of reflux esophagitis and esophageal cancer.


Result Analysis
Print
Save
E-mail