1.Acteoside ameliorates hepatocyte ferroptosis and hepatic ischemia-reperfusion injury via targeting PCBP2.
Kexin JIA ; Yinhao ZHANG ; Fanghong LI ; Runping LIU ; Jianzhi WU ; Jiaorong QU ; Ranyi LUO ; Zixi HUANG ; Zhe XU ; Xiaojiaoyang LI
Acta Pharmaceutica Sinica B 2025;15(4):2077-2094
Hepatic ischemia-reperfusion injury (HIRI) has been considered as an inevitable process of liver transplantation. Hepatocyte ferroptosis is a key factor in HIRI development, yet precise mechanism and potential therapies are still unclear. Here, we demonstrated a strong correlation between hepatocyte ferroptosis and the downregulation of poly(rC)-binding protein (PCBP2), which compromised the stability of antiporter system Xc- (consisted of SL3A2/SLC7A11). Besides, inhibiting PCBP2 contributed to facilitating cofactor p300 to enhance the transcriptional activity of HIF1α, leading to the expression and secretion of HMGB1. Then, released HMGB1 from ferroptotic hepatocytes worsened M1 macrophage recruitment and immune response during HIRI. Additionally, acteoside (ACT) was shown to assist PCBP2 in stabilizing the mRNA stability of Slc3a2 and Slc7a11, as well as enhance the binding affinity of PCBP2-system Xc-. Beyond that, ACT also supported PCBP2 to limit HMGB1-induced M1 macrophage recruitment through imposing restrictions on p300 and HIF1α. Furthermore, specific knockdown of PCBP2 in hepatocytes directly interposed the therapeutic efficacy of ACT on HIRI mice. In conclusion, ACT alleviated hepatocyte ferroptosis and HIRI via promoting PCBP2 to maintain the stability of system Xc- and limit HIF1α/p300-HMGB1 signaling. These findings highlight the therapeutic benefits of ACT in treating HIRI and offer insights into innovative therapeutic strategies.
2.Chuanxiong Rhizoma extracts prevent liver fibrosis via targeting CTCF-c-MYC-H19 pathway.
Yajing LI ; Fanghong LI ; Mingning DING ; Zhi MA ; Shuo LI ; Jiaorong QU ; Xiaojiaoyang LI
Chinese Herbal Medicines 2024;16(1):82-93
OBJECTIVE:
Hepatic fibrosis has been widely considered as a conjoint consequence of almost all chronic liver diseases. Chuanxiong Rhizoma (Chuanxiong in Chinese, CX) is a traditional Chinese herbal product to prevent cerebrovascular, gynecologic and hepatic diseases. Our previous study found that CX extracts significantly reduced collagen contraction force of hepatic stellate cells (HSCs). Here, this study aimed to compare the protection of different CX extracts on bile duct ligation (BDL)-induced liver fibrosis and investigate plausible underlying mechanisms.
METHODS:
The active compounds of CX extracts were identified by high performance liquid chromatography (HPLC). Network pharmacology was used to determine potential targets of CX against hepatic fibrosis. Bile duct hyperplasia and liver fibrosis were evaluated by serologic testing and histopathological evaluation. The expression of targets of interest was determined by quantitative real-time PCR (qPCR) and Western blot.
RESULTS:
Different CX extracts were identified by tetramethylpyrazine, ferulic acid and senkyunolide A. Based on the network pharmacological analysis, 42 overlap targets were obtained via merging the candidates targets of CX and liver fibrosis. Different aqueous, alkaloid and phthalide extracts of CX (CXAE, CXAL and CXPHL) significantly inhibited diffuse severe bile duct hyperplasia and thus suppressed hepatic fibrosis by decreasing CCCTC binding factor (CTCF)-c-MYC-long non-coding RNA H19 (H19) pathway in the BDL-induced mouse model. Meanwhile, CX extracts, especially CXAL and CXPHL also suppressed CTCF-c-MYC-H19 pathway and inhibited ductular reaction in cholangiocytes stimulated with taurocholate acid (TCA), lithocholic acid (LCA) and transforming growth factor beta (TGF-β), as illustrated by decreased bile duct proliferation markers.
CONCLUSION
Our data supported that different CX extracts, especially CXAL and CXPHL significantly alleviated hepatic fibrosis and bile duct hyperplasia via inhibiting CTCF-c-MYC-H19 pathway, providing novel insights into the anti-fibrotic mechanism of CX.
3.Si-Wu-Tang attenuates liver fibrosis via regulating lncRNA H19-dependent pathways involving cytoskeleton remodeling and ECM deposition.
Jiaorong QU ; Xiaoyong XUE ; Zhixing WANG ; Zhi MA ; Kexin JIA ; Fanghong LI ; Yinhao ZHANG ; Ruiyu WU ; Fei ZHOU ; Piwen ZHAO ; Xiaojiaoyang LI
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):31-46
Liver fibrosis is a dynamic wound-healing response characterized by the agglutination of the extracellular matrix (ECM). Si-Wu-Tang (SWT), a traditional Chinese medicine (TCM) formula, is known for treating gynecological diseases and liver fibrosis. Our previous studies demonstrated that long non-coding RNA H19 (H19) was markedly upregulated in fibrotic livers while its deficiency markedly reversed fibrogenesis. However, the mechanisms by which SWT influences H19 remain unclear. Thus, we established a bile duct ligation (BDL)-induced liver fibrosis model to evaluate the hepatoprotective effects of SWT on various cells in the liver. Our results showed that SWT markedly improved ECM deposition and bile duct reactions in the liver. Notably, SWT relieved liver fibrosis by regulating the transcription of genes involved in the cytoskeleton remodeling, primarily in hepatic stellate cells (HSCs), and influencing cytoskeleton-related angiogenesis and hepatocellular injury. This modulation collectively led to reduced ECM deposition. Through extensive bioinformatics analyses, we determined that H19 acted as a miRNA sponge and mainly inhibited miR-200, miR-211, and let7b, thereby regulating the above cellular regulatory pathways. Meanwhile, SWT reversed H19-related miRNAs and signaling pathways, diminishing ECM deposition and liver fibrosis. However, these protective effects of SWT were diminished with the overexpression of H19 in vivo. In conclusion, our study elucidates the underlying mechanisms of SWT from the perspective of H19-related signal networks and proposes a potential SWT-based therapeutic strategy for the treatment of liver fibrosis.
Humans
;
RNA, Long Noncoding/genetics*
;
Liver Cirrhosis/genetics*
;
Liver/metabolism*
;
Hepatic Stellate Cells/pathology*
;
MicroRNAs/metabolism*
;
Extracellular Matrix/metabolism*
;
Drugs, Chinese Herbal
4.Liver sinusoidal endothelial cell: An important yet often overlooked player in the liver fibrosis
Jiaorong QU ; Le WANG ; Yufei LI ; Xiaojiaoyang LI
Clinical and Molecular Hepatology 2024;30(3):303-325
Liver sinusoidal endothelial cells (LSECs) are liver-specific endothelial cells with the highest permeability than other mammalian endothelial cells, characterized by the presence of fenestrae on their surface, the absence of diaphragms and the lack of basement membrane. Located at the interface between blood and other liver cell types, LSECs mediate the exchange of substances between the blood and the Disse space, playing a crucial role in maintaining substance circulation and homeostasis of multicellular communication. As the initial responders to chronic liver injury, the abnormal LSEC activation not only changes their own physicochemical properties but also interrupts their communication with hepatic stellate cells and hepatocytes, which collectively aggravates the process of liver fibrosis. In this review, we have comprehensively updated the various pathways by which LSECs were involved in the initiation and aggravation of liver fibrosis, including but not limited to cellular phenotypic change, the induction of capillarization, decreased permeability and regulation of intercellular communications. Additionally, the intervention effects and latest regulatory mechanisms of anti-fibrotic drugs involved in each aspect have been summarized and discussed systematically. As we studied deeper into unraveling the intricate role of LSECs in the pathophysiology of liver fibrosis, we unveil a promising horizon that pave the way for enhanced patient outcomes.

Result Analysis
Print
Save
E-mail