1.Traditional Chinese Medicine Treats Acute Lung Injury by Modulating NLRP3 Inflammasome: A Review
Jiaojiao MENG ; Lei LIU ; Yuqi FU ; Hui SUN ; Guangli YAN ; Ling KONG ; Ying HAN ; Xijun WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):292-301
Acute lung injury (ALI) is one of the most common and critical diseases in clinical practice, with extremely high morbidity and mortality, seriously threatening human life and health. The pathogenesis of ALI is complex, in which the inflammatory response is a key factor. Studies have shown that NOD-like receptor protein 3 (NLRP3) inflammasomes are involved in ALI through mechanisms such as inflammation induction, increased microvascular permeability, recruitment of neutrophils, oxidative stress, and pyroptosis, playing a key role in the occurrence and progression of ALI. Therefore, regulating NLRP3 inflammasomes and inhibiting the release of inflammatory factors can alleviate the damage in ALI. At present, ALI is mainly treated by mechanical ventilation and oxygen therapy, which have problems such as high costs and poor prognosis. In recent years, studies have shown that traditional Chinese medicine (TCM) can reduce the inflammatory response and the occurrence of oxidative stress and pyroptosis by regulating the NLRP3 inflammasome, thus alleviating the damage and decreasing the mortality of ALI. Based on the relevant literature in recent years, this article reviews the research progress in TCM treatment of ALI by regulating NLRP3 inflammasomes, discusses how NLRP3 inflammasomes participate in ALI, and summarizes the active ingredients, extracts, and compound prescriptions of TCM that regulate NLRP3 inflammasomes, aiming to provide new ideas for the clinical treatment of ALI and the development of relevant drugs.
2.Analysis of Differences in Secondary Metabolites Between Dendrobium nobile Bionic Wild Cultivated on Epiphytic Stones and Trees Based on Widely Targeted Metabolomics
Yifan SHI ; Changqing ZHOU ; Jiaojiao WANG ; Lin CHEN ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):218-224
ObjectiveTo explore the differences in the accumulation of secondary metabolites of Dendrobium nobile cultivated on epiphytic stones and trees, so as to elucidate the scientific connotation of "only those that grow on stones has superior quality", and provide a direction for the cultivation and quality evaluation of D. nobile. MethodsUltra-performance liquid chromatography-triple quadrupole/linear ion trap mass spectrometry(UPLC-QTRAP-MS/MS)-based widely targeted metabolomics was used to detect the metabolites of D. nobile cultivated on epiphytic stones and trees. And the combination of principal component analysis(PCA), hierarchical cluster analysis(HCA), and orthogonal partial least squares-discriminant analysis(OPLS-DA) was performed for multivariate statistical analysis of metabolites. Differential metabolites were screened by variable importance in the projection(VIP) value≥1 and log2fold change(FC)≥1 or ≤-1, and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis was conducted. ResultsA total of 1 267 metabolites were identified in the stems of D. nobile from the two cultivation modes, dominated by flavonoids(292), phenolic acids(284), and alkaloids(189). Through OPLS-DA screening, 473 differential metabolites were obtained. Compared to epiphytic tree-cultivated D. nobile, epiphytic stone-cultivated D. nobile exhibited upregulation of flavonoids, phenolic acids, alkaloids, lignans and coumarins, while quinones and terpenoids were down-regulated. The differential metabolites mainly included flavonoid glycosides and alkaloids, and these differential metabolites significantly contributed to characterizing the two cultivation patterns. KEGG enrichment analysis revealed significant enrichment in pathways of flavone and flavonol biosynthesis, flavonoid biosynthesis, tyrosine metabolism, and phenylalanine metabolism in epiphytic stone-cultivated D. nobile. ConclusionEpiphytic stone cultivation is beneficial for the accumulation of phenolic acids, flavonoids, and alkaloids in D. nobile, indicating that the "only those that grow on stones has superior quality" documented in the materia medica has certain scientific basis, and the findings also provide a reference for quality evaluation and discrimination research between epiphytic stone and tree cultivated D. nobile.
3.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
4.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
5.Mechanism of Buyang Huanwutang in Inhibiting Ferroptosis and Enhancing Neurological Function Recovery After Spinal Cord Injury via GPX4-ACSL4 Axis
Luchun XU ; Guozheng JIANG ; Yukun MA ; Jiawei SONG ; Yushan GAO ; Guanlong WANG ; Jiaojiao FAN ; Yongdong YANG ; Xing YU ; Xiangsheng TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):20-30
ObjectiveTo explore the mechanism by which Buyang Huanwutang regulates the glutathione peroxidase 4 (GPX4)-acyl-CoA synthetase long-chain family member 4 (ACSL4) axis to inhibit ferroptosis and promote neurological functional recovery after spinal cord injury (SCI). MethodsNinety rats were randomly divided into five groups: sham operation group, model group, low-dose Buyang Huanwutang group (12.5 g·kg-1), high-dose Buyang Huanwutang group (25 g·kg-1), and Buyang Huanwutang + inhibitor group (25 g·kg-1 + 5 g·kg-1 RSL3). The SCI model was established by using the allen method. Tissue was collected on the 7th and 28th days after operation. Motor function was assessed by using the Basso-Beattie-Bresnahan (BBB) scale. Hematoxylin-eosin (HE), Nissl, and Luxol fast blue (LFB) staining were performed to observe spinal cord histopathology. Transmission electron microscopy was used to examine mitochondrial ultrastructure. Immunofluorescence staining was used to detect the number of NeuN-positive cells and the fluorescence intensity of myelin basic protein (MBP), GPX4, and ACSL4. Real-time fluorescent quantitative polymerase chain reaction (Real-time PCR) was used to analyze the mRNA expression of GPX4 and ACSL4. Enzyme linked immunosorbent assay (ELISA) was performed to measure the levels of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD). Colorimetric assays were used to determine the iron content in spinal cord tissue. ResultsCompared to the sham operation group, the model group exhibited significantly reduced BBB scores (P<0.01), severe pathological damage in spinal cord tissue, and marked mitochondrial ultrastructural disruption. In addition, the model group showed a decrease in the number of NeuN-positive cells (P<0.01), reduced fluorescence intensity of MBP and GPX4 (P<0.01), lower levels of GSH and SOD (P<0.01), and downregulated mRNA expression of GPX4 (P<0.01). Moreover, compared to the sham operation group, the model group had elevated levels of ROS, MDA, and tissue iron content (P<0.01), along with increased fluorescence intensity and mRNA expression of ACSL4 (P<0.01). Compared with the model group and Buyang Huanwutang + inhibitor group, the Buyang Huanwutang group showed significantly improved BBB scores (P<0.05, P<0.01) and exhibited less severe spinal cord tissue damage, reduced edema and inflammatory cell infiltration, increased neuronal survival, and more intact myelin structures. Additionally, mitochondrial ultrastructure was significantly improved in the Buyang Huanwutang group. Compared to the model group and Buyang Huanwutang + inhibitor group, the Buyang Huanwutang group significantly increased the number of NeuN-positive cells and the fluorescence intensity of MBP (P<0.05, P<0.01). Furthermore, Buyang Huanwutang significantly increased the fluorescence intensity and mRNA expression of GPX4 (P<0.01) and decreased the fluorescence intensity and mRNA expression of ACSL4 (P<0.01) compared to the model group and Buyang Huanwutang + inhibitor group. Finally, the Buyang Huanwutang group significantly decreased ROS, MDA, and tissue iron content (P<0.01) and significantly increased GSH and SOD levels (P<0.01) compared to the model group and Buyang Huanwutang + inhibitor group. ConclusionBuyang Huanwutang inhibits ferroptosis through the GPX4/ACSL4 axis, reduces secondary neuronal and myelin injury and oxidative stress, and ultimately promotes the recovery of neurological function.
6.Triglyceride-glucose index and homocysteine in association with the risk of stroke in middle-aged and elderly diabetic populations
Xiaolin LIU ; Jin ZHANG ; Zhitao LI ; Xiaonan WANG ; Juzhong KE ; Kang WU ; Hua QIU ; Qingping LIU ; Jiahui SONG ; Jiaojiao GAO ; Yang LIU ; Qian XU ; Yi ZHOU ; Xiaonan RUAN
Shanghai Journal of Preventive Medicine 2025;37(6):515-520
ObjectiveTo investigate the triglyceride-glucose (TyG) index and the level of serum homocysteine (Hcy) in association with the incidence of stroke in type 2 diabetes mellitus (T2DM) patients. MethodsBased on the chronic disease risk factor surveillance cohort in Pudong New Area, Shanghai, excluding those with stroke in baseline survey, T2DM patients who joined the cohort from January 2016 to October 2020 were selected as the research subjects. During the follow-up period, a total of 318 new-onset ischemic stroke patients were selected as the case group, and a total of 318 individuals matched by gender without stroke were selected as the control group. The Cox proportional hazards regression model was used to adjust for confounding factors and explore the serum TyG index and the Hcy biochemical indicator in association with the risk of stroke. ResultsThe Cox proportional hazards regression results showed that after adjusting for confounding factors, the risk of stroke in T2DM patients with 10 μmol·L⁻¹
7.Research progress on the regulation of diabetic retinopathy by the mTOR-autophagy pathway
Tingting QIN ; Leying ZHANG ; Ting LI ; Xiaohui KUANG ; Jiaojiao WANG ; Zongming SONG
International Eye Science 2025;25(10):1617-1622
Diabetic retinopathy(DR)is one of the most common and severe microvascular complications in diabetic patients and has become one of the leading causes of blindness worldwide. With the continuous rise in the prevalence of diabetes, in-depth exploration of the pathogenesis of DR and effective intervention measures is of great clinical significance. The mechanistic target of rapamycin(mTOR), as a protein kinase, is widely involved in cellular processes such as growth, metabolism, and autophagy. Research indicates that the mTOR signaling pathway plays a crucial regulatory role in the pathological progression of DR, and its abnormal activity can disrupt retinal cell autophagy function, thereby accelerating cellular damage and disease progression. Autophagy, as an important regulatory mechanism for cellular homeostasis, maintains cellular functional balance by clearing damaged organelles and protein aggregates. This article provides a systematic review of the structural and functional aspects of the mTOR signaling pathway, the molecular regulatory mechanisms of autophagy, and their roles in retinal pathological changes. By summarizing current research findings, the article aims to clarify the key regulatory role of the mTOR-autophagy axis in DR, providing theoretical support for elucidating the molecular pathogenesis of DR and offering potential targets and research directions for developing novel targeted therapeutic strategies, thereby holding significant scientific and clinical value.
8.Dihydromyricetin mitigates abdominal aortic aneurysm via transcriptional and post-transcriptional regulation of heme oxygenase-1 in vascular smooth muscle cells.
Weile YE ; Pinglian YANG ; Mei JIN ; Jiami ZOU ; Zhihua ZHENG ; Yuanyuan LI ; Dongmei ZHANG ; Wencai YE ; Zunnan HUANG ; Jiaojiao WANG ; Zhiping LIU
Acta Pharmaceutica Sinica B 2025;15(3):1514-1534
Abdominal aortic aneurysm (AAA) is a deadly condition of the aorta, carrying a significant risk of death upon rupture. Currently, there is a dearth of efficacious pharmaceutical interventions to impede the advancement of AAA and avert it from rupturing. Here, we investigated dihydromyricetin (DHM), one of the predominant bioactive flavonoids in Ampelopsis grossedentata (A. grossedentata), as a potential agent for inhibiting AAA. DHM effectively blocked the formation of AAA in angiotensin II-infused apolipoprotein E-deficient (ApoE-/-) mice. A combination of network pharmacology and whole transcriptome sequencing analysis revealed that DHM's anti-AAA action is linked to heme oxygenase (HO)-1 (Hmox-1 for the rodent gene) and hypoxia-inducible factor (HIF)-1α in vascular smooth muscle cells (VSMCs). Remarkably, DHM caused a robust rise (∼10-fold) of HO-1 protein expression in VSMCs, thereby suppressing VSMC inflammation and oxidative stress and preserving the VSMC contractile phenotype. Intriguingly, the therapeutic effect of DHM on AAA was largely abrogated by VSMC-specific Hmox1 knockdown in mice. Mechanistically, on one hand, DHM increased the transcription of Hmox-1 by triggering the nuclear translocation and activation of HIF-1α, but not nuclear factor erythroid 2-related factor 2 (NRF2). On the other hand, molecular docking, combined with cellular thermal shift assay (CETSA), isothermal titration calorimetry (ITC), drug affinity responsive target stability (DARTS), co-immunoprecipitation (Co-IP), and site mutant experiments revealed that DHM bonded to HO-1 at Lys243 and prevented its degradation, thereby resulting in considerable HO-1 buildup. In summary, our findings suggest that naturally derived DHM has the capacity to markedly enhance HO-1 expression in VSMCs, which may hold promise as a therapeutic strategy for AAA.
9.Discovery and proof-of-concept study of a novel highly selective sigma-1 receptor agonist for antipsychotic drug development.
Wanyu TANG ; Zhixue MA ; Bang LI ; Zhexiang YU ; Xiaobao ZHAO ; Huicui YANG ; Jian HU ; Sheng TIAN ; Linghan GU ; Jiaojiao CHEN ; Xing ZOU ; Qi WANG ; Fan CHEN ; Guangying LI ; Chaonan ZHENG ; Shuliu GAO ; Wenjing LIU ; Yue LI ; Wenhua ZHENG ; Mingmei WANG ; Na YE ; Xuechu ZHEN
Acta Pharmaceutica Sinica B 2025;15(10):5346-5365
Sigma-1 receptor (σ 1R) has become a focus point of drug discovery for central nervous system (CNS) diseases. A series of novel 1-phenylethan-1-one O-(2-aminoethyl) oxime derivatives were synthesized. In vitro biological evaluation led to the identification of 1a, 14a, 15d and 16d as the most high-affinity (K i < 4 nmol/L) and selective σ 1R agonists. Among these, 15d, the most metabolically stable derivative exhibited high selectivity for σ 1R in relation to σ 2R and 52 other human targets. In addition to low CYP450 inhibition and induction, 15d also exhibited high brain permeability and excellent oral bioavailability. Importantly, 15d demonstrated effective antipsychotic potency, particularly for alleviating negative symptoms and improving cognitive impairment in experimental animal models, both of which are major challenges for schizophrenia treatment. Moreover, 15d produced no significant extrapyramidal symptoms, exhibiting superior pharmacological profiles in relation to current antipsychotic drugs. Mechanistically, 15d inhibited GSK3β and enhanced prefrontal BDNF expression and excitatory synaptic transmission in pyramidal neurons. Collectively, these in vivo proof-of-concept findings provide substantial experimental evidence to demonstrate that modulating σ 1R represents a potential new therapeutic approach for schizophrenia. The novel chemical entity along with its favorable drug-like and pharmacological profile of 15d renders it a promising candidate for treating schizophrenia.
10.Neurospecific transmembrane protein 240 colocalizes with peroxisomes and activates Rho GDP dissociation inhibitor β.
Qiongqiong HU ; Wenpei LI ; Lixia XU ; Ruilei GUAN ; Dongya ZHANG ; Jiaojiao JIANG ; Ning WANG ; Gaiqing YANG
Journal of Southern Medical University 2025;45(6):1260-1269
OBJECTIVES:
To investigate the subcellular localization and biological functions of transmembrane protein 240 (TMEM240).
METHODS:
NCBI BLAST and TMHMM bioinformatics software were used for protein sequence analysis and prediction of transmembrane domain of TMEM240. Brain tissues from male C57BL/6 mice (18-20 days old) were examined for distribution of TMEM240 using in situ hybridization, and qPCR and Western blotting were used to detect TMEM240 expression in different mouse tissues and in cortical neurons at different time points (n=3). In the in vitro experiment, HepG2 and Neuro-2a cells were transfected with plasmids for overexpression of TMEM240, and subcellular localization of TMEM240 was analyzed using cell imaging. In primary cultures of cortical neurons isolated from C57BL/6 mice, TMEM240 expression and its biological functions were investigated using qPCR, Western blotting, and immunofluorescence staining.
RESULTS:
Human and mouse TMEM240 proteins share a 97.69% similarity in the protein sequences, and both are transmembrane proteins with two transmembrane domains. TMEM240 mRNA and protein were highly expressed in mouse brain tissues and cortical neurons. In isolated mouse cortical neurons, TMEM240 expression reached the peak level after primary culture for 9 days and distributed in scattered spots within the cells. In HepG2 cells, TMEM240 was characterized as intracellular membrane structures and showed 80% colocalization with peroxisomes. In Neuro-2a cells, TMEM240 overexpression caused significant enhancement of the expressions of Rho GDP dissociation inhibitor β (ARHGDIB) at both the mRNA and protein levels.
CONCLUSIONS
TMEM240 is a novel intracellular subcellular structure specifically expressed in neurons with significant potential for targeted cellular function regulation.
Animals
;
Humans
;
Mice
;
Peroxisomes/metabolism*
;
Membrane Proteins/genetics*
;
Mice, Inbred C57BL
;
Neurons/metabolism*
;
Male
;
rho-Specific Guanine Nucleotide Dissociation Inhibitors
;
Hep G2 Cells
;
Brain/metabolism*

Result Analysis
Print
Save
E-mail