1.Traditional Chinese Medicine Treats Acute Lung Injury by Modulating NLRP3 Inflammasome: A Review
Jiaojiao MENG ; Lei LIU ; Yuqi FU ; Hui SUN ; Guangli YAN ; Ling KONG ; Ying HAN ; Xijun WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):292-301
Acute lung injury (ALI) is one of the most common and critical diseases in clinical practice, with extremely high morbidity and mortality, seriously threatening human life and health. The pathogenesis of ALI is complex, in which the inflammatory response is a key factor. Studies have shown that NOD-like receptor protein 3 (NLRP3) inflammasomes are involved in ALI through mechanisms such as inflammation induction, increased microvascular permeability, recruitment of neutrophils, oxidative stress, and pyroptosis, playing a key role in the occurrence and progression of ALI. Therefore, regulating NLRP3 inflammasomes and inhibiting the release of inflammatory factors can alleviate the damage in ALI. At present, ALI is mainly treated by mechanical ventilation and oxygen therapy, which have problems such as high costs and poor prognosis. In recent years, studies have shown that traditional Chinese medicine (TCM) can reduce the inflammatory response and the occurrence of oxidative stress and pyroptosis by regulating the NLRP3 inflammasome, thus alleviating the damage and decreasing the mortality of ALI. Based on the relevant literature in recent years, this article reviews the research progress in TCM treatment of ALI by regulating NLRP3 inflammasomes, discusses how NLRP3 inflammasomes participate in ALI, and summarizes the active ingredients, extracts, and compound prescriptions of TCM that regulate NLRP3 inflammasomes, aiming to provide new ideas for the clinical treatment of ALI and the development of relevant drugs.
2.Analysis of Differences in Secondary Metabolites Between Dendrobium nobile Bionic Wild Cultivated on Epiphytic Stones and Trees Based on Widely Targeted Metabolomics
Yifan SHI ; Changqing ZHOU ; Jiaojiao WANG ; Lin CHEN ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):218-224
ObjectiveTo explore the differences in the accumulation of secondary metabolites of Dendrobium nobile cultivated on epiphytic stones and trees, so as to elucidate the scientific connotation of "only those that grow on stones has superior quality", and provide a direction for the cultivation and quality evaluation of D. nobile. MethodsUltra-performance liquid chromatography-triple quadrupole/linear ion trap mass spectrometry(UPLC-QTRAP-MS/MS)-based widely targeted metabolomics was used to detect the metabolites of D. nobile cultivated on epiphytic stones and trees. And the combination of principal component analysis(PCA), hierarchical cluster analysis(HCA), and orthogonal partial least squares-discriminant analysis(OPLS-DA) was performed for multivariate statistical analysis of metabolites. Differential metabolites were screened by variable importance in the projection(VIP) value≥1 and log2fold change(FC)≥1 or ≤-1, and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis was conducted. ResultsA total of 1 267 metabolites were identified in the stems of D. nobile from the two cultivation modes, dominated by flavonoids(292), phenolic acids(284), and alkaloids(189). Through OPLS-DA screening, 473 differential metabolites were obtained. Compared to epiphytic tree-cultivated D. nobile, epiphytic stone-cultivated D. nobile exhibited upregulation of flavonoids, phenolic acids, alkaloids, lignans and coumarins, while quinones and terpenoids were down-regulated. The differential metabolites mainly included flavonoid glycosides and alkaloids, and these differential metabolites significantly contributed to characterizing the two cultivation patterns. KEGG enrichment analysis revealed significant enrichment in pathways of flavone and flavonol biosynthesis, flavonoid biosynthesis, tyrosine metabolism, and phenylalanine metabolism in epiphytic stone-cultivated D. nobile. ConclusionEpiphytic stone cultivation is beneficial for the accumulation of phenolic acids, flavonoids, and alkaloids in D. nobile, indicating that the "only those that grow on stones has superior quality" documented in the materia medica has certain scientific basis, and the findings also provide a reference for quality evaluation and discrimination research between epiphytic stone and tree cultivated D. nobile.
3.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
4.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
5.Clinical research progress on the relationship between vitamin D and glucose metabolism disorders
Yin CHEN ; Zhitian ZHANG ; Jiaojiao LIU ; Hongmei YAN ; Shanshan GUO
Chinese Journal of Clinical Medicine 2025;32(3):512-518
Approximately 10% of the global adult population has diabetes, with accumulating evidence linking suboptimal vitamin D levels to an increased risk of type 2 diabetes and its complications. Current clinical studies suggest that vitamin D supplementation may enhance insulin sensitivity and improve glycemic control, prompting significant interest in its potential as a therapeutic intervention. However, further high-quality, large-scale randomized controlled trials are required to validate its efficacy in glucose metabolism regulation and clarify the underlying molecular mechanisms. These investigations will provide critical evidence to inform precision medicine approaches for diabetes prevention and management.
6.Triglyceride-glucose index and homocysteine in association with the risk of stroke in middle-aged and elderly diabetic populations
Xiaolin LIU ; Jin ZHANG ; Zhitao LI ; Xiaonan WANG ; Juzhong KE ; Kang WU ; Hua QIU ; Qingping LIU ; Jiahui SONG ; Jiaojiao GAO ; Yang LIU ; Qian XU ; Yi ZHOU ; Xiaonan RUAN
Shanghai Journal of Preventive Medicine 2025;37(6):515-520
ObjectiveTo investigate the triglyceride-glucose (TyG) index and the level of serum homocysteine (Hcy) in association with the incidence of stroke in type 2 diabetes mellitus (T2DM) patients. MethodsBased on the chronic disease risk factor surveillance cohort in Pudong New Area, Shanghai, excluding those with stroke in baseline survey, T2DM patients who joined the cohort from January 2016 to October 2020 were selected as the research subjects. During the follow-up period, a total of 318 new-onset ischemic stroke patients were selected as the case group, and a total of 318 individuals matched by gender without stroke were selected as the control group. The Cox proportional hazards regression model was used to adjust for confounding factors and explore the serum TyG index and the Hcy biochemical indicator in association with the risk of stroke. ResultsThe Cox proportional hazards regression results showed that after adjusting for confounding factors, the risk of stroke in T2DM patients with 10 μmol·L⁻¹
7.Dihydromyricetin mitigates abdominal aortic aneurysm via transcriptional and post-transcriptional regulation of heme oxygenase-1 in vascular smooth muscle cells.
Weile YE ; Pinglian YANG ; Mei JIN ; Jiami ZOU ; Zhihua ZHENG ; Yuanyuan LI ; Dongmei ZHANG ; Wencai YE ; Zunnan HUANG ; Jiaojiao WANG ; Zhiping LIU
Acta Pharmaceutica Sinica B 2025;15(3):1514-1534
Abdominal aortic aneurysm (AAA) is a deadly condition of the aorta, carrying a significant risk of death upon rupture. Currently, there is a dearth of efficacious pharmaceutical interventions to impede the advancement of AAA and avert it from rupturing. Here, we investigated dihydromyricetin (DHM), one of the predominant bioactive flavonoids in Ampelopsis grossedentata (A. grossedentata), as a potential agent for inhibiting AAA. DHM effectively blocked the formation of AAA in angiotensin II-infused apolipoprotein E-deficient (ApoE-/-) mice. A combination of network pharmacology and whole transcriptome sequencing analysis revealed that DHM's anti-AAA action is linked to heme oxygenase (HO)-1 (Hmox-1 for the rodent gene) and hypoxia-inducible factor (HIF)-1α in vascular smooth muscle cells (VSMCs). Remarkably, DHM caused a robust rise (∼10-fold) of HO-1 protein expression in VSMCs, thereby suppressing VSMC inflammation and oxidative stress and preserving the VSMC contractile phenotype. Intriguingly, the therapeutic effect of DHM on AAA was largely abrogated by VSMC-specific Hmox1 knockdown in mice. Mechanistically, on one hand, DHM increased the transcription of Hmox-1 by triggering the nuclear translocation and activation of HIF-1α, but not nuclear factor erythroid 2-related factor 2 (NRF2). On the other hand, molecular docking, combined with cellular thermal shift assay (CETSA), isothermal titration calorimetry (ITC), drug affinity responsive target stability (DARTS), co-immunoprecipitation (Co-IP), and site mutant experiments revealed that DHM bonded to HO-1 at Lys243 and prevented its degradation, thereby resulting in considerable HO-1 buildup. In summary, our findings suggest that naturally derived DHM has the capacity to markedly enhance HO-1 expression in VSMCs, which may hold promise as a therapeutic strategy for AAA.
8.Discovery and proof-of-concept study of a novel highly selective sigma-1 receptor agonist for antipsychotic drug development.
Wanyu TANG ; Zhixue MA ; Bang LI ; Zhexiang YU ; Xiaobao ZHAO ; Huicui YANG ; Jian HU ; Sheng TIAN ; Linghan GU ; Jiaojiao CHEN ; Xing ZOU ; Qi WANG ; Fan CHEN ; Guangying LI ; Chaonan ZHENG ; Shuliu GAO ; Wenjing LIU ; Yue LI ; Wenhua ZHENG ; Mingmei WANG ; Na YE ; Xuechu ZHEN
Acta Pharmaceutica Sinica B 2025;15(10):5346-5365
Sigma-1 receptor (σ 1R) has become a focus point of drug discovery for central nervous system (CNS) diseases. A series of novel 1-phenylethan-1-one O-(2-aminoethyl) oxime derivatives were synthesized. In vitro biological evaluation led to the identification of 1a, 14a, 15d and 16d as the most high-affinity (K i < 4 nmol/L) and selective σ 1R agonists. Among these, 15d, the most metabolically stable derivative exhibited high selectivity for σ 1R in relation to σ 2R and 52 other human targets. In addition to low CYP450 inhibition and induction, 15d also exhibited high brain permeability and excellent oral bioavailability. Importantly, 15d demonstrated effective antipsychotic potency, particularly for alleviating negative symptoms and improving cognitive impairment in experimental animal models, both of which are major challenges for schizophrenia treatment. Moreover, 15d produced no significant extrapyramidal symptoms, exhibiting superior pharmacological profiles in relation to current antipsychotic drugs. Mechanistically, 15d inhibited GSK3β and enhanced prefrontal BDNF expression and excitatory synaptic transmission in pyramidal neurons. Collectively, these in vivo proof-of-concept findings provide substantial experimental evidence to demonstrate that modulating σ 1R represents a potential new therapeutic approach for schizophrenia. The novel chemical entity along with its favorable drug-like and pharmacological profile of 15d renders it a promising candidate for treating schizophrenia.
9.Exploring the potential protective role of anthocyanins in mitigating micro/nanoplastic-induced reproductive toxicity: A steroid receptor perspective.
Jiaojiao ZHANG ; Wenyi LIU ; Fuqiang CUI ; Marjukka KOLEHMAINEN ; Jing CHEN ; Lei ZHANG ; Iman ZAREI
Journal of Pharmaceutical Analysis 2025;15(2):101148-101148
Microplastics and nanoplastics (MPs/NPs) are ubiquitous environmental pollutants that act as endocrine-disrupting chemicals (EDCs), raising significant concerns about their impact on human health. Research highlights the hazardous effects of MPs/NPs on both male and female reproductive systems, influencing germ cells, embryo development, and progeny. Additionally, studies show that MPs/NPs affect the gene expression of anabolic steroid hormones in vitro and in vivo, inducing reproductive toxicity through mechanisms such as oxidative stress and inflammation. Considering these adverse effects, identifying natural compounds that can mitigate the toxicity of MPs/NPs is increasingly important. Plants offer a wealth of antioxidants and anti-inflammatory compounds that can counteract these harmful effects. Among these, anthocyanins, natural colorants responsible for the vibrant hues of fruits and flowers, exhibit a wide range of biological activities, including antioxidant, anti-inflammatory, and anti-neoplastic properties. Moreover, anthocyanins can modulate sex hormone levels and alleviate reproductive toxicity. Cyanidin-3-glucoside (C3G), one of the most extensively studied anthocyanins, shows promise in reducing reproductive toxicity, particularly in females, and in protecting male reproductive organs, including the testis and epididymis. This protective effect is believed to result from its interaction with steroid receptors, specifically the androgen and estrogen receptors (ERs). These findings highlight the need to explore the mechanisms by which anthocyanins mitigate the reproductive toxicity caused by MPs/NPs. This review provides novel insights into how natural compounds can be leveraged to lessen the impact of environmental contaminants on human health, especially concerning reproductive health.
10.In silico prediction of pK a values using explainable deep learning methods.
Chen YANG ; Changda GONG ; Zhixing ZHANG ; Jiaojiao FANG ; Weihua LI ; Guixia LIU ; Yun TANG
Journal of Pharmaceutical Analysis 2025;15(6):101174-101174
Negative logarithm of the acid dissociation constant (pK a) significantly influences the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of molecules and is a crucial indicator in drug research. Given the rapid and accurate characteristics of computational methods, their role in predicting drug properties is increasingly important. Although many pK a prediction models currently exist, they often focus on enhancing model precision while neglecting interpretability. In this study, we present GraFpK a, a pK a prediction model using graph neural networks (GNNs) and molecular fingerprints. The results show that our acidic and basic models achieved mean absolute errors (MAEs) of 0.621 and 0.402, respectively, on the test set, demonstrating good predictive performance. Notably, to improve interpretability, GraFpK a also incorporates Integrated Gradients (IGs), providing a clearer visual description of the atoms significantly affecting the pK a values. The high reliability and interpretability of GraFpK a ensure accurate pK a predictions while also facilitating a deeper understanding of the relationship between molecular structure and pK a values, making it a valuable tool in the field of pK a prediction.

Result Analysis
Print
Save
E-mail