1.Management of Cutaneous Immune-Related Adverse Events of Malignant Tumors Induced by Immune Checkpoint Inhibitors Based on Theory of "Fire and Original Qi are Restricted"
Shiliang SHAO ; Lijing JIAO ; Yichao WANG ; Decai WANG ; Qishan HUA ; Yabin GONG ; Ling XU
Journal of Traditional Chinese Medicine 2025;66(16):1656-1661
Guided by the theory of "fire and original qi are restricted", it is believed that original qi depletion is the root of the cutaneous immune-related adverse events (cirAEs) related to immune checkpoint inhibitors (ICIs), and the yin fire exuberance is the branch. Among them, original qi depletion is the internal foundation of the disease, while the drug toxicity of ICIs harming original qi is the initiating factor, and exuberant yin fire is the key pathogenesis. In clinical practice, the general treatment principle advocates banking up original qi to consolidate the root and draining fire to raise yang. Buzhong Yiqi Decoction (补中益气汤) can be used to activate transportation of middle jiao (焦) and promote ascent and dispersion of clear yang, thereby restoring the balance of qi and fire, and medicinals such as Huangqin (Radix Scutellariae), Huanglian (Rhizoma Coptidis) and Huangbai (Cortex Phellodendri Chinensis) can be supplementetd to clear and drain yin fire. At the same time, considering the accompanying symptoms such as dampness-stasis and fluids depletion, the methods of removing dampness and dispelling stasis, supplementing blood and nourishing yin should be added flexibly. This approach can provide a new perspective and treatment strategy for reducing ICIs-related cirAEs in malignant tumors.
2.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
3.Current status of cognition and skin care behavior in adolescent patients with acne: A survey in China.
Jing TIAN ; Hong SHU ; Qiufang QIAN ; Zhong SHEN ; Chunyu ZHAO ; Li SONG ; Ping LI ; Xiuping HAN ; Hua QIAN ; Jinping CHEN ; Hua WANG ; Lin MA ; Yuan LIANG
Chinese Medical Journal 2024;137(4):476-477
4.Role of problem chain and course ideological and political cases teaching method in enhancing clinical medication ability research
Zhi-Hua QIN ; Long-Xi PENG ; Gao-Shuang LAN ; Xiao-Bin ZHANG ; Jiao-Jiao YANG ; Liang ZHU ; Xi-Long QIU ; Yun-Long CHEN
The Chinese Journal of Clinical Pharmacology 2024;40(11):1650-1653
Nowadays,with the continuous deepening and development of vocational education teaching reform,medical higher vocational education always takes moral education as the fundamental task.As an independent type of education,vocational education should always deepen the integration of industry and education and the integration of science and education.Through the teaching research of"problem chain+course ideological and political case",this study innovates the coordinated education team of drug nursing curriculum,the collaborative education method and the collaborative education evaluation,and improves the teaching effect.
5.Role and Mechanism of Polyunsaturated Fatty Acids on Potassium Ion Channels
Yu-Jiao SUN ; Chao CHANG ; Zhen-Hua WU ; Yi-Fei ZHANG ; Yu-Tao TIAN
Progress in Biochemistry and Biophysics 2024;51(1):5-19
Polyunsaturated fatty acids (PUFAs) have diverse health-promoting effects, such as potentially protecting in immune, nervous, and cardiovascular systems by targeting a variety of sites, including most ion channels. Voltage-gated potassium channels of the KV7 family and large-conductance Ca2+- and voltage-activated K+ (BKCa) channels are expressed in many tissues, therefore, their physiological importance is evident from the various disorders linked to dysfunctional KV7 channels and BKCa channels. Thus, it is extremely important to learn how potassium channels are regulated by PUFAs. The aim of this review is to provide an overview of the effects of PUFAs on KV7 channels and BKCa channels functions, as well as the mechanisms underlying these effects. In summarizing reported effects of PUFAs on KV7 and BKCa channels mediated currents, we generally conclude that PUFAs increase the current amplitude, meanwhile, differential molecular and biophysical mechanisms are associated with the current increase. In KV7 channels the currents increasement are associated with a shift in the voltage dependence of channel opening and increased maximum conductance in KV7 channels, while in BKCa channels, they are associated with destabilization the pore domain closed conformation. Furthermore, PUFA effects are influenced by auxiliary subunits of KV7 and BKCa channels, associate with channels in certain tissues. although findings are conflicting. A better understanding of how PUFAs regulate KV7 and BKCa channels may offer insight into their physiological regulation and may lead to new therapeutic strategies and approaches.
6.Mechanism of action of the bile acid receptor TGR5 in obesity.
Weijun LUN ; Qihao YAN ; Xinghua GUO ; Minchuan ZHOU ; Yan BAI ; Jincan HE ; Hua CAO ; Qishi CHE ; Jiao GUO ; Zhengquan SU
Acta Pharmaceutica Sinica B 2024;14(2):468-491
G protein-coupled receptors (GPCRs) are a large family of membrane protein receptors, and Takeda G protein-coupled receptor 5 (TGR5) is a member of this family. As a membrane receptor, TGR5 is widely distributed in different parts of the human body and plays a vital role in regulating metabolism, including the processes of energy consumption, weight loss and blood glucose homeostasis. Recent studies have shown that TGR5 plays an important role in glucose and lipid metabolism disorders such as fatty liver, obesity and diabetes. With the global obesity situation becoming more and more serious, a comprehensive explanation of the mechanism of TGR5 and filling the gaps in knowledge concerning clinical ligand drugs are urgently needed. In this review, we mainly explain the anti-obesity mechanism of TGR5 to promote the further study of this target, and show the electron microscope structure of TGR5 and review recent studies on TGR5 ligands to illustrate the specific binding between TGR5 receptor binding sites and ligands, which can effectively provide new ideas for ligand research and promote drug research.
7.Optimization of Prime Editing System and Its Application in Large DNA Fragment Editing
Progress in Biochemistry and Biophysics 2024;51(10):2602-2620
Gene editing technology utilizes artificial nucleases to insert, replace, or delete specific sequences in desired genomic regions. The discovery of CRISPR/Cas9 nucleases was a milestone in the development of advanced gene editing tools, which revolutionized the field due to their simplicity and versatility. However, the limited precision of Cas9 nucleases remains a notable obstacle. Recently, derivative technologies such as prime editing have earned considerable attention for their enhanced efficiency and precision. The prime editing system consists of two components: the SpCas9 nickase (H840A) fused with reverse transcriptase (MLV-RT) and an engineered prime editing guide RNA (pegRNA). This system can irreversibly introduce various types of genetic changes into the genome, including 12 possible types of point mutations, as well as insertions, deletions and their combinations, without the need for DNA double-strand breaks (DSBs) or donor DNA templates. Prime editing offers several advantages in terms of editing accuracy, versatility, PAM constraints, and off-target effects. The editing results of prime editing system is highly accurate and can be tailored to specific needs. In addition, the system can be edited near or far from PAM sites, making it less constrained by PAM site restrictions. Moreover, it demonstrates high genome-wide specificity. The system also supports a variety of edits, demonstrating immense potential, especially in large DNA fragment editing—an area that relied heavily on CRISPR/Cas9 nucleases before. The development of prime editing, especially bi-direction prime editor, shed new light on large DNA fragment manipulations, including deletions, insertions, replacements, gene integration, as well as chromosomal translocations, inversions, and tandem duplications. Despite the significant progress made with prime editing technology, its application still faces challenges, especially low editing efficiency, which limits its potential in broader research and clinical settings. Consequently, researchers are exploring strategies to enhance the efficiency of prime editing. This review highlights several approaches to improving prime editing efficiency. These include optimizing pegRNA by refining PBS and RT parameters, increasing pegRNA stability and expression levels, and developing automated pegRNA design software. Additionally, efforts are being made to optimize the prime editing system proteins, such as screening for Cas9 and reverse transcriptase variants and performing codon optimization. The final aspect is the regulation of endogenous factors, including the inhibition of mismatch repair mechanisms and the modulation of chromatin environment. These approaches significantly enhance the practicality of prime editing in research and clinical contexts. In conclusion, prime editing represents a major advancement in the field of gene editing, offering powerful tools and methods for both basic research and clinical applications. This review will introduce the discovery, improvement and applications of prime editors, with a focus on prime editing mediated large DNA fragment manipulations. Hopefully, these insights will serve as valuable references for future research and applications of prime editing technology.
8.Two new isoflavones from Dalbergia rimosa Roxb.
Wei-yu WANG ; Wen-jiao CHEN ; Mei-fang HUANG ; Cheng-sheng LU ; Xu FENG ; Chen-yan LIANG ; Jian-hua WEI
Acta Pharmaceutica Sinica 2024;59(7):2053-2057
Studies on chemical constituents in the rhizome of
9.Analysis of epidemiological and clinical characteristics of 1247 cases of infectious diseases of the central nervous system
Jia-Hua ZHAO ; Yu-Ying CEN ; Xiao-Jiao XU ; Fei YANG ; Xing-Wen ZHANG ; Zhao DONG ; Ruo-Zhuo LIU ; De-Hui HUANG ; Rong-Tai CUI ; Xiang-Qing WANG ; Cheng-Lin TIAN ; Xu-Sheng HUANG ; Sheng-Yuan YU ; Jia-Tang ZHANG
Medical Journal of Chinese People's Liberation Army 2024;49(1):43-49
Objective To summarize the epidemiological and clinical features of infectious diseases of the central nervous system(CNS)by a single-center analysis.Methods A retrospective analysis was conducted on the data of 1247 cases of CNS infectious diseases diagnosed and treated in the First Medical Center of PLA General Hospital from 2001 to 2020.Results The data for this group of CNS infectious diseases by disease type in descending order of number of cases were viruses 743(59.6%),Mycobacterium tuberculosis 249(20.0%),other bacteria 150(12.0%),fungi 68(5.5%),parasites 18(1.4%),Treponema pallidum 18(1.4%)and rickettsia 1(0.1%).The number of cases increased by 177 cases(33.1%)in the latter 10 years compared to the previous 10 years(P<0.05).No significant difference in seasonal distribution pattern of data between disease types(P>0.05).Male to female ratio is 1.87︰1,mostly under 60 years of age.Viruses are more likely to infect students,most often at university/college level and above,farmers are overrepresented among bacteria and Mycobacterium tuberculosis,and more infections of Treponema pallidum in workers.CNS infectious diseases are characterized by fever,headache and signs of meningeal irritation,with the adductor nerve being the more commonly involved cranial nerve.Matagenomic next-generation sequencing improves clinical diagnostic capabilities.The median hospital days for CNS infectious diseases are 18.00(11.00,27.00)and median hospital costs are ¥29,500(¥16,000,¥59,200).The mortality rate from CNS infectious diseases is 1.6%.Conclusions The incidence of CNS infectious diseases is increasing last ten years,with complex clinical presentation,severe symptoms and poor prognosis.Early and accurate diagnosis and standardized clinical treatment can significantly reduce the morbidity and mortality rate and ease the burden of disease.
10.Observation of acute clinical manifestations of cosmetology-related ocular damage
Jian JIAO ; Wen HUA ; Chongyang SHE ; Weiwei ZHU ; Xuedong LI
International Eye Science 2024;24(7):1152-1156
AIM: To investigate the acute clinical manifestations of cosmetology-related ocular damage(COD).METHODS:Retrospective study. A total of 53 cases(89 eyes)with ocular damage caused by cosmetology from April 2016 to October 2021 were collected. The clinical features were analyzed, including age, gender, affected eye(s), clinical manifestations, injury cause, treatment procedures, and prognosis.RESULTS: All 53 patients were female, aged 22-45 years, with an average age of 28.4±6.7 years. Monocular injuries were observed in 17 patients, and binocular injuries in 36 patients. The same eye could exhibit two or more ocular damage simultaneously. The primary cosmetology procedures causing COD were eyeliner tattooing(38 eyes; 43%), eyelash extensions(18 eyes; 20%), removal of false eyelashes(11 eyes; 12%), mascara application(8 eyes; 9%), double eyelid surgery(6 eyes; 7%), and others(8 eyes; 9%). Major ocular damages included corneal damage(56 eyes; 63%), eyelid contact dermatitis(26 eyes; 29%), conjunctivitis(19 eyes; 21%), reactive eyelid edema(13 eyes; 15%), ocular surface foreign bodies(12 eyes; 14%), bacterial infection of the palpebral margin(10 eyes; 11%), and others(5 eyes; 6%). These 5 eyes included 1 eye(1%)with central retinal artery occlusion caused by periocular injection of hyaluronic acid. The majority of patients(74 eyes)recovered within 1-2 wk with appropriate treatment, while filamentosa keratitis appeared in 3 eyes and the eye with central retinal artery occlusion had poor prognosis.CONCLUSIONS: COD predominantly occurs in young and middle-aged females with cosmetology experience. The most common cosmetology procedure leading to COD is eyeliner tattooing, and corneal damage is the most significant type of COD. COD can be effectively prevented and treated, resulting in a generally favorable prognosis.

Result Analysis
Print
Save
E-mail