1.Identification of Chemical Constituents of Bidens pilosa and Analysis of Its Anti-gastric Cancer Cell Proliferation Activity in Vitro
Yu HAN ; Chang LIU ; Jiao LIU ; Tao ZHANG ; Zhongmei ZOU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):154-164
ObjectiveTo study the chemical constituents of Bidens pilosa and the in vitro antiproliferative activity of some compounds against gastric cancer cells. MethodsThe chemical constituents were isolated and purified by methods such as silica gel column chromatography, preparative thin layer chromatography, medium pressure preparation chromatography, semi-preparative high performance liquid chromatography(HPLC) and recrystallization, their structures were identified on the basis of physicochemical properties, spectral data and circular dichroism spectra. Thiazole blue(MTT) assay was used to determine the in vitro inhibitory activityies of some isolated compounds against human gastric cancer SGC-7901 cells, and molecular docking was used to predict their potential targets. ResultsTwenty-five compounds were isolated from the petroleum ether fraction of B. pilosa and identified as bidpillignan A(
2.The role of gut microbiota homeostasis in the occurrence and development of hepatocellular carcinoma and targeted intervention strategies
Yan CUI ; Junzhe JIAO ; Ruijuan YAN ; Shuguang YAN ; Hailiang WEI ; Zhanjie CHANG ; Haibo ZHANG ; Jingtao LI
Journal of Clinical Hepatology 2025;41(9):1913-1919
Hepatocellular carcinoma (HCC), as the sixth most common malignant tumor worldwide, poses a serious threat to human health due to its insidious onset and high mortality rate. This article reviews the molecular mechanisms and intervention strategies of gut microbiota (GM) homeostasis in the development and progression of HCC, in order to provide new ideas for the intervention and treatment of HCC. Studies have shown that GM dysbiosis, intestinal leakage, microbial-associated molecular pattern, bacterial translocation, and metabolic products play key roles in the progression of HCC. GM imbalance may lead to immune escape, thereby promoting tumor cell proliferation and metastasis. This article elaborates on the association between GM and HCC, deeply analyzes the mechanism of action of GM in the development and progression of HCC, investigates the role of bile acid-related metabolites, short-chain fatty acid-related metabolites, and other metabolites in HCC, and explores the strategies for targeting GM in the treatment of HCC, including probiotics, prebiotics, antibiotics, Toll-like receptor 4 antagonists, and fecal microbiota transplantation. This article emphasizes that maintaining the integrity of the intestinal barrier and GM homeostasis is of great significance in the prevention and treatment of HCC, which provides a direction for developing new diagnosis and treatment strategies.
3.Identification and functional analysis of β-amyrin synthase gene in Dipsacus asper.
Huan LEI ; Hua HE ; Jiao XU ; Chang-Gui YANG ; Wei-Ke JIANG ; Tao ZHOU ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2025;50(4):1043-1050
Dipsaci Radix is a commonly used Chinese herbal medicine in China, with triterpenoid saponins as the main active components. β-Amyrin synthase, a member of the oxidosqualene cyclase superfamily, plays a crucial role in the biosynthesis of oleanane-type triterpenoid saponins. Asperosaponin Ⅵ is an oleanane-type triterpenoid saponin. To explore the β-amyrin synthase genes involved in the biosynthesis of asperosaponin Ⅵ in Dipsacus asper, this study screened the candidate genes from the transcriptome data of D. asper. Two β-amyrin synthase genes, Da OSC1 and Da OSC2, were identified by phylogenetic analysis and correlation analysis. The coding sequences of Da OSC1 and Da OSC2 were 2 286 bp and 2 295 bp in length, encoding 761 and 764 amino acids,respectively. Multiple sequence alignments showed that Da OSC1 and Da OSC2 had three conserved motifs( DCTAE, QW, and MWCYCR) unique to the oxidosqualene cyclase family. Real-time quantitative PCR results showed that Da OSC1 and Da OSC2 had the highest expression levels in the roots. Compared with normal growth conditions, the low-temperature treatment significantly upregulated the expression of Da OSC1 and Da OSC2. Agrobacterium-mediated transient expression of Da OSC1 and Da OSC2 in Nicotiana benthamiana resulted in the production of β-amyrin, which suggested that Da OSC1 and Da OSC2 were able to catalyze the synthesis of β-amyrin. This study clarified the catalytic functions of two β-amyrin synthases in D. asper, analyzed their expression patterns in different tissue and at low temperatures. The findings provide a foundation for further studying the biosynthetic pathway and regulatory mechanism of asperosaponin Ⅵ in D. asper.
Intramolecular Transferases/chemistry*
;
Phylogeny
;
Plant Proteins/chemistry*
;
Gene Expression Regulation, Plant
;
Dipsacaceae/classification*
;
Saponins/metabolism*
;
Oleanolic Acid/metabolism*
4.Anteromedial cortical support reduction in treatment of trochanteric femur fractures: a ten-year reappraisal.
Sunjun HU ; Shouchao DU ; Shimin CHANG ; Wei MAO ; Zhenhai WANG ; Kewei TIAN ; Tao LIU ; Yunfeng RUI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(12):1501-1509
OBJECTIVE:
This review summarized the first 10-year progresses and controversies in the concept of anteromedial cortical support reduction, to provide references for further study and clinical applications.
METHODS:
Relevant domestic and foreign literature on cortical support reduction was extensively reviewed to summarize the definition of positive, neutral, and negative support, anteromedial cortices at the inferior corner, intraoperative technical tips for fracture reduction, radiographic assessment at different periods, comparison between positive versus neutral and medial versus anterior support, and the clinical efficacy of Chang reduction quality criteria (CRQC) and postoperative stability score.
RESULTS:
Anteromedial cortical support reduction was only focused on the cortex of anteromedial inferior corner, with no concern the status of lateral wall or lesser trochanter. Anteromedial cortex was seldom involved by fracture comminution, it was thicker, denser, and stronger, and was the key for mechanical buttress of the head-neck fragment to share compression load. Positive, neutral, and negative support were also called "extramedullary, anatomic, and intramedullary reduction", respectively. There was hardly seen parallel cortical apposition, but characterized by some kinds of head-neck rotation, for example 10°-15° flexed rotation for positive cortical contact and support. Due to intraoperative compression and postoperative impaction, the status of cortical support may be changed at different time of radiographic examination. The positive medial cortex support was more reliable with less reduction loss than its neutral counterpart, and the anterior cortex contact was more predictive than the medial cortex for final results. As incorporation the bearing of cortex apposition and using a 4-point score, CRQC demonstrated more efficacy and was gradually accepted and applied in the evaluation of trochanteric fracture reduction quality. Postoperative stability score (8 points) provided a assessment tool for early weight-bearing in safety to prevent mechanical failure.
CONCLUSION
Anteromedial cortical support reduction is a key point for stability reconstruction in the treatment of trochanteric femur fractures. Evidence has definitely shown that non-negative (positive and neutral) is superior to negative (loss of cortical support). There is a tendency that positive cortex support is superior to neutral, but high quality study with large sample size is needed for a clear conclusion.
Humans
;
Femur/diagnostic imaging*
;
Fracture Fixation, Internal/methods*
;
Hip Fractures/diagnostic imaging*
;
Treatment Outcome
;
Fracture Fixation, Intramedullary/methods*
5.Clinical features and variant spectrum of FGFR3-related disorders.
Shi-Li GU ; Ling-Wen YING ; Guo-Ying CHANG ; Xin LI ; Juan LI ; Yu DING ; Ru-En YAO ; Ting-Ting YU ; Xiu-Min WANG
Chinese Journal of Contemporary Pediatrics 2025;27(10):1259-1265
OBJECTIVES:
To study genotype-phenotype correlations in children with FGFR3 variants and to improve clinical recognition of related disorders.
METHODS:
Clinical data of 95 patients aged 0-18 years harboring FGFR3 variants, confirmed by whole‑exome sequencing at Shanghai Children's Medical Center from January 2012 to December 2023, were retrospectively reviewed. Detailed phenotypic characterization was performed for 22 patients with achondroplasia (ACH) and 10 with hypochondroplasia (HCH).
RESULTS:
Among the 95 patients, 52 (55%) had ACH, 24 (25%) had HCH, 9 (9%) had thanatophoric dysplasia, 3 (3%) had syndromic skeletal dysplasia, 2 (2%) had severe achondroplasia with developmental delay and acanthosis nigricans, and 5 (5%) remained unclassified. A previously unreported FGFR3 variant, c.1663G>T, was identified. All 22 ACH patients presented with disproportionate short stature accompanied by limb dysplasia, commonly with macrocephaly, a depressed nasal bridge, bowed legs, and frontal bossing; complications were present in 17 (77%). The 10 HCH patients predominantly exhibited disproportionate short stature with limb dysplasia and depressed nasal bridge.
CONCLUSIONS
ACH is the most frequent phenotype associated with FGFR3 variants, and missense variants constitute the predominant variant type. The degree of FGFR3 activation appears to correlate with the clinical severity of skeletal dysplasia.
Humans
;
Receptor, Fibroblast Growth Factor, Type 3/genetics*
;
Child
;
Male
;
Child, Preschool
;
Female
;
Infant
;
Adolescent
;
Dwarfism/genetics*
;
Achondroplasia/genetics*
;
Lordosis/genetics*
;
Infant, Newborn
;
Retrospective Studies
;
Genetic Association Studies
;
Bone and Bones/abnormalities*
;
Phenotype
;
Limb Deformities, Congenital
6.A new phenolic acid isolated from Salvia miltiorrhiza ameliorates OVA-induced allergic asthma by regulation of Th17/Treg cells and inflammation through the TLR4 pathway.
Zeng MENGNAN ; Wu YUANYUAN ; Ren YINGJIE ; Jiao XIANMIAN ; Chang FANGZHUO ; Wang YUANYUAN ; Feng WEISHENG ; Zheng XIAOKE
Chinese Journal of Natural Medicines (English Ed.) 2025;23(12):100007-100007
Salvia miltiorrhiza (S. miltiorrhiza) represents a crucial component of traditional Chinese medicine, demonstrating effects on blood circulation activation and stasis removal, and has been widely utilized in asthma treatment. This study isolated a novel phenolic acid (S1) from S. miltiorrhiza and investigated its anti-asthmatic activity and underlying mechanisms for the first time. An allergic asthma (AA) model was established using ovalbumin (OVA). The mechanism of S1's effects on AA was investigated using multi-factor joint analysis, flow cytometry, and co-culture systems to facilitate clinical asthma treatment. S1 (10 or 20 mg·kg-1) was administered daily to mice with OVA-induced AA (OVA-AA) during days 21-25. The study examined airway responsiveness, lung damage, inflammation, and levels of immunoglobulin E (IgE), PGD2, interleukins (IL-4, 5, 10, 13, 17A), tumor necrosis factor α (TNF-α), GM-CSF, CXCL1, CCL11, and mMCP-1. Additionally, mast cell (MC) activation and degranulation were explored, along with T helper type 17 (Th17)/Treg immune cells and TLR4 pathway biomarkers. The antagonistic activity of that specific antagonist of TLR4 (TAK-242) (1 µmol·L-1), a specific TLR4 blocker, against S1 (10 µmol·L-1) was examined in co-cultured 16HBE cells and bone marrow-derived cells (BMDCs) or splenic lymphocytes (SLs) induced with LPS (1 µg·mL-1) to elucidate the TLR4 pathway's mediating role. S1 demonstrated reduced airway responsiveness, lung damage, and inflammation, with downregulation of IgE, PGD2, interleukins, TNF-α, GM-CSF, CXCL1, CCL11, and mMCP-1. It also impeded MC activation and degranulation, upregulated IL-10, and influenced Th17/Treg immune cell transformation following OVA challenge. Furthermore, S1 inhibited the TLR4 pathway in OVA-AA mice, and TLR4 antagonism enhanced S1's positive effects. Analysis using an OVA-AA mouse model demonstrated that S1 alleviates AA clinical symptoms, restores lung function, and inhibits airway response. S1's therapeutic effects occur through regulation of Th17/Treg immune cells and inflammation, attributable at least partially to the TLR4 pathway. This study provides molecular justification for S1 in AA treatment.
7.A novel anti-ischemic stroke candidate drug AAPB with dual effects of neuroprotection and cerebral blood flow improvement.
Jianbing WU ; Duorui JI ; Weijie JIAO ; Jian JIA ; Jiayi ZHU ; Taijun HANG ; Xijing CHEN ; Yang DING ; Yuwen XU ; Xinglong CHANG ; Liang LI ; Qiu LIU ; Yumei CAO ; Yan ZHONG ; Xia SUN ; Qingming GUO ; Tuanjie WANG ; Zhenzhong WANG ; Ya LING ; Wei XIAO ; Zhangjian HUANG ; Yihua ZHANG
Acta Pharmaceutica Sinica B 2025;15(2):1070-1083
Ischemic stroke (IS) is a globally life-threatening disease. Presently, few therapeutic medicines are available for treating IS, and rt-PA is the only drug approved by the US Food and Drug Administration (FDA) in the US. In fact, many agents showing excellent neuroprotection but no blood flow-improving activity in animals have not achieved ideal clinical efficacy, while thrombolytic drugs only improving blood flow without neuroprotection have limited their wider application. To address these challenges and meet the huge unmet clinical need, we have designed and identified a novel compound AAPB with dual effects of neuroprotection and cerebral blood flow improvement. AAPB significantly reduced cerebral infarction and neural function deficit in tMCAO rats, pMCAO rats, and IS rhesus monkeys, as well as displayed exceptional safety profiles and excellent pharmacokinetic properties in rats and dogs. AAPB has now entered phase I of clinical trials fighting IS in China.
8.Jiawei Xiaoyao Pills improves depression-like behavior in rats by regulating neurotransmitters, inhibiting inflammation and oxidation and modulating intestinal flora.
Ying LIU ; Borui LI ; Yongcai LI ; Lubo CHANG ; Jiao WANG ; Lin YANG ; Yonggang YAN ; Kai QV ; Jiping LIU ; Gang ZHANG ; Xia SHEN
Journal of Southern Medical University 2025;45(2):347-358
OBJECTIVES:
To explore the bioactive components in Jiawei Xiaoyao Pills (JWXYP) and their mechanisms for alleviating depression-like behaviors.
METHODS:
The active compounds, key targets, and pathways of JWXYP were identified using TCMSP and TCMIP databases. Thirty-six SD rats were randomized equally into 6 groups including a control group and 5 chronic unpredictable mild stress (CUMS)-induced depression groups. After modeling, the 5 model groups were treated with daily gavage of normal saline, 1.8 mg/kg fluoxetine hydrochloride (positive control drug), or JWXYP at 1.44, 2.88, and 4.32 g/kg. The depression-like behaviors of the rats were evaluated using behavioral tests, and pathological changes in the liver and hippocampus were examined with HE staining. The biochemical indicators in the serum and brain tissues were detected using ELISA. Serum metabolomics analysis was performed to identify the differential metabolites using OPLS-DA, and gut microbiota changes were analyzed using 16S rDNA sequencing.
RESULTS:
Network pharmacology revealed that menthone and paeonol in JWXYP were capable of penetrating the blood-brain barrier to regulate inflammatory pathways and protect the nervous system. In the rat models subjected to CUMS, treatment with JWXYP significantly improved body weight loss, sucrose preference and open field activities, reduced liver inflammation, alleviated structural changes in the hippocampal neurons, decreased serum levels of TNF‑α, IL-1β, IL-6 and LBP, and increased 5-HT and VIP concentrations in the serum and brain tissue, and these effects were the most pronounced in the high-dose group. Metabolomics analysis showed changes in such metabolites as indole-3-acetamide and acetyl-L-carnitine in JWXYP-treated rats, involving the pathways for bile acid biosynthesis and amino acid metabolism. 16S rDNA analysis demonstrated increased gut microbiota diversity and increased abundance of Lactobacillus species in JWXYP-treated rats.
CONCLUSIONS
JWXYP alleviates depression-like symptoms in rats by regulating the neurotransmitters, inhibiting inflammation and oxidation, and modulating gut microbiota.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Gastrointestinal Microbiome/drug effects*
;
Rats, Sprague-Dawley
;
Depression/drug therapy*
;
Neurotransmitter Agents/metabolism*
;
Rats
;
Inflammation
;
Male
;
Hippocampus
;
Behavior, Animal/drug effects*
9.Baicalein attenuates lipopolysaccharide-induced myocardial injury by inhibiting ferroptosis via miR-299b-5p/HIF1-α pathway.
Wen-Yan ZHOU ; Jian-Kui DU ; Hong-Hong LIU ; Lei DENG ; Kai MA ; Jian XIAO ; Sheng ZHANG ; Chang-Nan WANG
Journal of Integrative Medicine 2025;23(5):560-575
OBJECTIVE:
Baicalein has been reported to have wide therapeutic effects that act through its anti-inflammatory activity. This study examines the effect and mechanism of baicalein on sepsis-induced cardiomyopathy (SIC).
METHODS:
A thorough screening of a small library of natural products, comprising 100 diverse compounds, was conducted to identify the most effective drug against lipopolysaccharide (LPS)-treated H9C2 cardiomyocytes. The core target proteins and their associated signaling pathways involved in baicalein's efficacy against LPS-induced myocardial injury were predicted by network pharmacology.
RESULTS:
Baicalein was identified as the most potent protective agent in LPS-exposed H9C2 cardiomyocytes. It exhibited a dose-dependent inhibitory effect on cell injury and inflammation. In the LPS-induced septic mouse model, baicalein demonstrated a significant capacity to mitigate LPS-triggered myocardial deficits, inflammatory responses, and ferroptosis. Network pharmacological analysis and experimental confirmation suggested that hypoxia-inducible factor 1 subunit α (HIF1-α) is likely to be the crucial factor in mediating the impact of baicalein against LPS-induced myocardial ferroptosis and injury. By combining microRNA (miRNA) screening in LPS-treated myocardium with miRNA prediction targeting HIF1-α, we found that miR-299b-5p may serve as a regulator of HIF1-α. The reduction in miR-299b-5p levels in LPS-treated myocardium, compared to the control group, was reversed by baicalein treatment. The reverse transcription quantitative polymerase chain reaction, Western blotting, and dual-luciferase reporter gene analyses together identified HIF1-α as the target of miR-299b-5p in cardiomyocytes.
CONCLUSION
Baicalein mitigates SIC at the miRNA level, suggesting the therapeutic potential of it in treating SIC through the regulation of miR-299b-5p/HIF1-α/ferroptosis pathway. Please cite this article as: Zhou WY, Du JK, Liu HH, Deng L, Ma K, Xiao J, Zhang S, Wang CN. Baicalein attenuates lipopolysaccharide-induced myocardial injury by inhibiting ferroptosis via miR-299b-5p/HIF1-α pathway. J Integr Med. 2025; 23(5):560-575.
Flavanones/pharmacology*
;
Animals
;
MicroRNAs/genetics*
;
Lipopolysaccharides
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Ferroptosis/drug effects*
;
Mice
;
Myocytes, Cardiac/metabolism*
;
Signal Transduction/drug effects*
;
Rats
;
Male
;
Mice, Inbred C57BL
;
Cardiomyopathies/etiology*
;
Cell Line
;
Sepsis/complications*
10.Comprehensive Analysis of Oncogenic, Prognostic, and Immunological Roles of FANCD2 in Hepatocellular Carcinoma: A Potential Predictor for Survival and Immunotherapy.
Meng Jiao XU ; Wen DENG ; Ting Ting JIANG ; Shi Yu WANG ; Ru Yu LIU ; Min CHANG ; Shu Ling WU ; Ge SHEN ; Xiao Xue CHEN ; Yuan Jiao GAO ; Hongxiao HAO ; Lei Ping HU ; Lu ZHANG ; Yao LU ; Wei YI ; Yao XIE ; Ming Hui LI
Biomedical and Environmental Sciences 2025;38(3):313-327
OBJECTIVE:
Hepatocellular carcinoma (HCC) is sensitive to ferroptosis, a new form of programmed cell death that occurs in most tumor types. However, the mechanism through which ferroptosis modulates HCC remains unclear. This study aimed to investigate the oncogenic role and prognostic value of FANCD2 and provide novel insights into the prognostic assessment and prediction of immunotherapy.
METHODS:
Using clinicopathological parameters and bioinformatic techniques, we comprehensively examined the expression of FANCD2 macroscopically and microcosmically. We conducted univariate and multivariate Cox regression analyses to identify the prognostic value of FANCD2 in HCC and elucidated the detailed molecular mechanisms underlying the involvement of FANCD2 in oncogenesis by promoting iron-related death.
RESULTS:
FANCD2 was significantly upregulated in digestive system cancers with abundant immune infiltration. As an independent risk factor for HCC, a high FANCD2 expression level was associated with poor clinical outcomes and response to immune checkpoint blockade. Gene set enrichment analysis revealed that FANCD2 was mainly involved in the cell cycle and CYP450 metabolism.
CONCLUSION
To the best of our knowledge, this is the first study to comprehensively elucidate the oncogenic role of FANCD2. FANCD2 has a tumor-promoting aspect in the digestive system and acts as an independent risk factor in HCC; hence, it has recognized value for predicting tumor aggressiveness and prognosis and may be a potential biomarker for poor responsiveness to immunotherapy.
Humans
;
Carcinoma, Hepatocellular/diagnosis*
;
Liver Neoplasms/diagnosis*
;
Immunotherapy
;
Fanconi Anemia Complementation Group D2 Protein/metabolism*
;
Prognosis
;
Male
;
Female
;
Middle Aged
;
Biomarkers, Tumor/metabolism*

Result Analysis
Print
Save
E-mail