1.Roles of lncRNA in the crosstalk between osteogenesis and angiogenesis in the bone microenvironment.
Shihua ZHANG ; Jianmin GUO ; Yuting HE ; Zhi'ang SU ; Yao FENG ; Lan ZHANG ; Zou JUN ; Xiquan WENG ; Yu YUAN
Journal of Zhejiang University. Science. B 2025;26(2):107-123
Bone is a highly calcified and vascularized tissue. The vascular system plays a vital role in supporting bone growth and repair, such as the provision of nutrients, growth factors, and metabolic waste transfer. Moreover, the additional functions of the bone vasculature, such as the secretion of various factors and the regulation of bone-related signaling pathways, are essential for maintaining bone health. In the bone microenvironment, bone tissue cells play a critical role in regulating angiogenesis, including osteoblasts, bone marrow mesenchymal stem cells (BMSCs), and osteoclasts. Osteogenesis and bone angiogenesis are closely linked. The decrease in osteogenesis and bone angiogenesis caused by aging leads to osteoporosis. Long noncoding RNAs (lncRNAs) are involved in various physiological processes, including osteogenesis and angiogenesis. Recent studies have shown that lncRNAs could mediate the crosstalk between angiogenesis and osteogenesis. However, the mechanism by which lncRNAs regulate angiogenesis‒osteogenesis crosstalk remains unclear. In this review, we describe in detail the ways in which lncRNAs regulate the crosstalk between osteogenesis and angiogenesis to promote bone health, aiming to provide new directions for the study of the mechanism by which lncRNAs regulate bone metabolism.
RNA, Long Noncoding/physiology*
;
Osteogenesis/physiology*
;
Humans
;
Neovascularization, Physiologic/genetics*
;
Bone and Bones/metabolism*
;
Animals
;
Mesenchymal Stem Cells
;
Signal Transduction
;
Osteoblasts
;
Osteoclasts
;
Angiogenesis
2.Quantification of complete viral particles in inactivated avian influenza virus antigen by high performance size exclusion chromatography coupled with multi-angle laser light scattering.
Jianmin HAO ; Youyan LIU ; Zhiguo SU ; Songping ZHANG ; Zhengjun LI
Chinese Journal of Biotechnology 2023;39(10):4295-4307
We developed a method for accurate quantification of the intact virus particles in inactivated avian influenza virus feedstocks. To address the problem of impurities interference in the detection of inactivated avian influenza virus feedstocks by direct high performance size exclusion chromatography (HPSEC), we firstly investigated polyethylene glycol (PEG) precipitation and ion exchange chromatography (IEC) for H5N8 antigen purification. Under the optimized conditions, the removal rate of impurity was 86.87% in IEC using DEAE FF, and the viral hemagglutination recovery was 100%. HPSEC was used to analyze the pretreated samples. The peak of 8.5-10.0 min, which was the characteristic adsorption of intact virus, was analyzed by SDS-PAGE and dynamic light scattering. It was almost free of impurities and the particle size was uniform with an average particle size of 127.7 nm. After adding antibody to the IEC pretreated samples for HPSEC detection, the characteristic peak disappeared, indicating that IEC pretreatment effectively removed the impurities. By coupling HPSEC with multi-angle laser scattering technique (MALLS), the amount of intact virus particles in the sample could be accurately quantified with a good linear relationship between the number of virus particles and the chromatographic peak area (R2=0.997). The established IEC pretreatment-HPSEC-MALLS assay was applied to accurate detection of the number of intact virus particles in viral feedstocks of different subtypes (H7N9), different batches and different concentrations, all with good applicability and reproducibility, Relative standard deviation < 5%, n=3.
Animals
;
Reproducibility of Results
;
Influenza A Virus, H7N9 Subtype
;
Influenza in Birds
;
Chromatography, Gel
;
Virion
;
Lasers
3.Metabolic Disease Management Guideline for National Metabolic Management Center(2nd edition)
Weiqing WANG ; Yufan WANG ; Guixia WANG ; Guang NING ; Dalong ZHU ; Ping LIU ; Libin LIU ; Jianmin LIU ; Zhaoli YAN ; Xulei TANG ; Bangqun JI ; Sunjie YAN ; Heng SU ; Jianling DU ; Sheli LI ; Li LI ; Shengli WU ; Jinsong KUANG ; Yubo SHA ; Ping ZHANG ; Yifei ZHANG ; Lei CHEN ; Zunhai ZHOU ; Chao ZHENG ; Qidong ZHENG ; Zhongyan SHAN ; Dong ZHAO ; Zhigang ZHAO ; Ling HU ; Tingyu KE ; Yu SHI ; Yingfen QIN ; Mingjun GU ; Xuejiang GU ; Fengmei XU ; Zuhua GAO ; Qijuan DONG ; Yi SHU ; Yuancheng DAI
Chinese Journal of Endocrinology and Metabolism 2023;39(6):538-554
The latest epidemiological data suggests that the situation of adult diabetes in China is severe, and metabolic diseases have become significant chronic illnesses that have a serious impact on public health and social development. After more than six years of practice, the National Metabolic Management Center(MMC) has developed distinctive approaches to manage metabolic patients and has achieved a series of positive outcomes, continuously advancing the standardized diagnosis and treatment model. In order to further improve the efficiency, based on the first edition, the second edition guideline was composed by incorporating experience of the past six years in conjunction with the latest international and domestic guidelines.
4.Principle and development of single base editing technology and its application in livestock breeding.
Yingbing ZHANG ; Chengtu ZHANG ; Ying WU ; Ruiluan YU ; Jianmin SU
Chinese Journal of Biotechnology 2023;39(1):19-33
CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) is widely used in the field of livestock breeding. However, its low efficiency, untargeted cutting and low safety have greatly hampered its use for introducing single base mutations in livestock breeding. Single base editing, as a new gene editing tool, can directly replace bases without introducing double strand breaks. Single base editing shows high efficiency and strong specificity, and provides a simpler and more effective method for precise gene modification in livestock breeding. This paper introduces the principle and development of single base editing technology and its application in livestock breeding.
Animals
;
Gene Editing
;
CRISPR-Cas Systems/genetics*
;
Livestock/genetics*
;
Mutation
;
Technology
5.Single base editing system mediates site-directed mutagenesis of genes GDF9 and FecB in Ouler Tibetan sheep.
Yifan ZHAO ; Yingbing ZHANG ; Ruiluan YU ; Ying WU ; Yongzhong CHEN ; Ruolin ZHAO ; Chengtu ZHANG ; Jianmin SU
Chinese Journal of Biotechnology 2023;39(1):204-216
In this study, a single base editing system was used to edit the FecB and GDF9 gene to achieve a targeted site mutation from A to G and from C to T in Ouler Tibetan sheep fibroblasts, and to test its editing efficiency. Firstly, we designed and synthesized sgRNA sequences targeting FecB and GDF9 genes of Ouler Tibetan sheep, followed by connection to epi-ABEmax and epi-BE4max plasmids to construct vectors and electrotransfer into Ouler Tibetan sheep fibroblasts. Finally, Sanger sequencing was performed to identify the target point mutation of FecB and GDF9 genes positive cells. T-A cloning was used to estimate the editing efficiency of the single base editing system. We obtained gRNA targeting FecB and GDF9 genes and constructed the vector aiming at mutating single base of FecB and GDF9 genes in Ouler Tibetan sheep. The editing efficiency for the target site of FecB gene was 39.13%, whereas the editing efficiency for the target sites (G260, G721 and G1184) of GDF9 gene were 10.52%, 26.67% and 8.00%, respectively. Achieving single base mutation in FecB and GDF9 genes may facilitate improving the reproduction traits of Ouler Tibetan sheep with multifetal lambs.
Animals
;
Sheep/genetics*
;
Gene Editing
;
Tibet
;
Mutation
;
Phenotype
;
Mutagenesis, Site-Directed
6.Noninvasive Tracking of Every Individual in Unmarked Mouse Groups Using Multi-Camera Fusion and Deep Learning.
Feng SU ; Yangzhen WANG ; Mengping WEI ; Chong WANG ; Shaoli WANG ; Lei YANG ; Jianmin LI ; Peijiang YUAN ; Dong-Gen LUO ; Chen ZHANG
Neuroscience Bulletin 2023;39(6):893-910
Accurate and efficient methods for identifying and tracking each animal in a group are needed to study complex behaviors and social interactions. Traditional tracking methods (e.g., marking each animal with dye or surgically implanting microchips) can be invasive and may have an impact on the social behavior being measured. To overcome these shortcomings, video-based methods for tracking unmarked animals, such as fruit flies and zebrafish, have been developed. However, tracking individual mice in a group remains a challenging problem because of their flexible body and complicated interaction patterns. In this study, we report the development of a multi-object tracker for mice that uses the Faster region-based convolutional neural network (R-CNN) deep learning algorithm with geometric transformations in combination with multi-camera/multi-image fusion technology. The system successfully tracked every individual in groups of unmarked mice and was applied to investigate chasing behavior. The proposed system constitutes a step forward in the noninvasive tracking of individual mice engaged in social behavior.
Animals
;
Mice
;
Deep Learning
;
Zebrafish
;
Algorithms
;
Neural Networks, Computer
;
Social Behavior
7.Research progress of new drug delivery system of gambogic acid
Shaowa LYU ; Fali SU ; Yuyan GUO ; Meng LI ; Yang ZHAO ; Huan ZHANG ; Jianmin LI
China Pharmacy 2022;33(13):1660-1664
Gambogic acid is the main active component of Garcinia hanburyi Hook. f. ,which can inhibit the growth of a variety of tumor cells. However ,its low solubility ,short half-life and poor stability limit its clinical application to a certain extent. In order to improve the above shortcomings and improve the bioavailability of gambogic acid ,many studies have used covalent binding and physical encapsulation methods to obtain a new gambogic acid delivery system with targeting ,high permeability ,stability, biocompatibility,in vivo long circulation and other properties ,such as polymer prodrug delivery system ,anoxic prodrug delivery system,magnetic field responsive prodrug delivery system ,multi environment sensitive prodrug delivery system ,bionic nano drug delivery system. This paper reviews the new drug delivery system and its characteristics of gambogic acid. The results show that the design of drug carrier has greatly improved the defects of gambogic acid ,and the introduction of more responsive groups into gambogic acid drug carrier may make it achieve better antitumor effect.
8.Experimental study and clinical significance of intravascular angiography in vivo
Kun CHENG ; Na SU ; Qiuyao LI ; Xiaofei GAO ; Kun FENG ; Zhicheng YANG ; Haiqing HOU ; Yuchun LI ; Jianmin LI ; Guanghui WANG
Chinese Journal of Orthopaedics 2022;42(8):482-491
Objective:To study the method of intravascular angiography in vivo, analyze the clinical significance, and supply the basis of diagnosis and treatment of related orthopaedic diseases.Methods:The development was realized by improving the developer to increase the local concentration. Based on the study of Lijianmin-Chengkun Complexes and using the theory of magnetic microspheres, Fe 3O 4 magnetic microspheres with amino (negatively charged) shell are used to adsorb the aggregated ionic developer meglumine diatrizoate (positively charged diatrizoate). That is, by improving the method of developer, the magnetic microspheres can carry the developer to make new nanoparticles magnetic imaging composite particles. Under the action of external magnetic field, the magnetic imaging composite particles brought by blood circulation continue to stay and gather in the blood vessels in the magnetic field area, and the developer carried by the magnetic microspheres in the blood vessels in the magnetic field area is concentrated to reach the imaging concentration, so as to realize in vivo intravascular vascular imaging. By adjusting the ratio of the two reagents, the charge can be neutralized and condensed into small groups to improve the development efficiency. Thus, the electron microscope experiment, CT in vivo experiment, rabbit imaging experiment, experimental rabbit tissue picture confirmation, CT in vivo human body (the author is a volunteer) imaging experiment were carried out step by step. Results:Electron microscope experiment: meglumine diatrizoate, scanning electron microscope, the particle diameter is about 20 nm. Scanning electron microscope showed that the diameter of the magnetic microspheres was about 100 nm and the distribution was uniform. After the two reagents are mixed in a certain proportion, the neutralizing charge condenses into small groups, but it still has magnetohydrodynamic properties and strong paramagnetism. In vivo rabbit imaging experiment: the ideal intraosseous vascular imaging of the proximal tibia was captured. The tissue pictures of experimental rabbits confirmed that the distribution of Fe 3O 4 was obviously visible in the blood vessels in the proximal tibia on the side with magnetic field, but not on the side without magnetic field. In vivo human imaging experiment: the ideal intraosseous vascular imaging of the proximal fibula was captured. Conclusion:Through the preparation of new reagent of magnetic imaging composite particles (magnetic microspheres + meglumine diatrizoate), the concentration of in vivo bone developer can be achieved under the action of external magnetic field, and the in vivo external diameter ≥ 0.5mm can be achieved under CT thin-layer scanning.
9.Efficacy observation of recombinant human granulocyte macrophage stimulating factor combined with R-CHOP regimen in treatment of diffuse large B-cell lymphoma
Su GAO ; Li CHEN ; Jie CHEN ; Weiping ZHANG ; Xiong NI ; Jianmin YANG
Journal of Leukemia & Lymphoma 2021;30(12):730-734
Objective:To observe the clinical efficacy and safety of recombinant human granulocyte macrophage stimulating factor (rhGM-CSF) combined with R-CHOP regimen in treatment of diffuse large B-cell lymphoma (DLBCL).Methods:The clinical data of 39 patients with newly diagnosed DLBCL treated with rhGM-CSF combined with R-CHOP regimen, and 39 patients with newly diagnosed DLBCL treated with R-CHOP regimen in Naval Medical University (Changhai Hospital) from February 2017 to November 2019 were retrospectively analyzed. The total response rate (ORR), remission rate (CR) rate, overall survival (OS), progression-free survival (PFS) and adverse reactions of both groups were compared.Results:In rhGM-CSF combined with R-CHOP regimen group and R-CHOP regimen group, ORR was 87.2% (34/39) and 82.1% (32/39), respectively, and the difference was statistically significant ( χ2 = 0.394, P = 0.53); CR rate was 71.8% (28/39) and 56.4% (22/39), respectively, and the difference was statistically significant ( χ2 = 2.006, P = 0.157). Until the last follow up on September 19, 2020, 32 patients survived and 7 patients died in rhGM-CSF combined with R-CHOP regimen group, of which 1 case died of bowel cancer, and the primary disease was still in CR. In the R-CHOP regimen group, 32 survived and 7 died. The 2-year OS rates of the two groups were 82.5% and 73.9%, respectively ( χ2 = 0.038, P = 0.845); the 2-year PFS rates of the two groups were 67.1% and 55.2%, respectively ( χ2 = 0.457, P = 0.499). Subgroup analysis results showed that there were no statistically significant differences in CR rates among germinal center B-cell (GCB) and non-GCB subgroups, Lugano stage Ⅰ-Ⅱ and Lugano stage Ⅲ-Ⅳ subgroups, aged <60 years and aged ≥60 years subgroups in rhGM-CSF combined with R-CHOP regimen group and R-CHOP regimen group (all P > 0.05). The major adverse reactions included bone marrow suppression and its inducible infections. There were no significant differences in the incidence of grade 3-4 hematological adverse reactions and infections between the two groups (all P > 0.05). All patients safely went through bone marrow suppression after support treatments without treatment-related deaths. Conclusions:rhGM-CSF combined with R-CHOP regimen is safe and effective in treatment of newly diagnosed DLBCL.
10.MIXed plastics biodegradation and UPcycling using microbial communities: the NSFC-EU 2019 project MIX-UP to help achieve "carbon neutrality".
Jie ZHOU ; Haijia SU ; Qiong WU ; Jianmin XING ; Weiliang DONG ; Min JIANG
Chinese Journal of Biotechnology 2021;37(10):3414-3424
With the transformation and revolution of the global plastics recycling system, recycling and upcycling of mixed plastics waste not only reduces the carbon emissions of plastics during its life cycle, but also addresses its potential ecological and environmental hazards. This article summarizes an international cooperation project, "MIXed plastics biodegradation and UPcycling using microbial communities" (MIX-UP) which was funded by the National Natural Science Foundation of China and the European Union (NSFC-EU) in 2019. The consortium of MIX-UP consists of 14 partners from European Union and China. Focusing on the global issue of "plastics pollution", this Sino-European MIX-UP project took the mixed waste of petroleum-based plastics (PP, PE, PUR, PET and PS) and bio-based plastics (PLA and PHA) as starting materials for biotechnological conversion into value-added, sustainable biomaterials. MIX-UP has three subprojects: 1) identification of plastics biodegradation pathway and design & engineering of key degrading elements, 2) construction and functional regulation of microbial consortia/enzyme cocktails with high-efficiency for degradation of plastics mixtures, 3) strategy of design and utilization of plastics degradation products for production of high value materials. Through NSFC-EU complementary and cross-disciplinary cooperation, MIX-UP proposes the engineering of a new-to-nature biological route for upcycling, a low carbon and sustainable bio-treatment that is different from the traditional physico-chemical treatment, which will empower the recycling industry to a new dimension. The implementation of the project will not only help to promote innovation and development in the field of biotechnology in China, but also contribute to the achievement of China's carbon neutral goal.
Biodegradation, Environmental
;
Biotechnology
;
Carbon
;
European Union
;
Microbiota
;
Plastics

Result Analysis
Print
Save
E-mail