1.Synthetic MRI Combined With Clinicopathological Characteristics for Pretreatment Prediction of Chemoradiotherapy Response in Advanced Nasopharyngeal Carcinoma
Siyu CHEN ; Jiankun DAI ; Jing ZHAO ; Shuang HAN ; Xiaojun ZHANG ; Jun CHANG ; Donghui JIANG ; Heng ZHANG ; Peng WANG ; Shudong HU
Korean Journal of Radiology 2025;26(2):135-145
Objective:
To explore the feasibility of synthetic magnetic resonance imaging (syMRI) combined with clinicopathological characteristics for the pre-treatment prediction of chemoradiotherapy (CRT) response in advanced nasopharyngeal carcinoma (ANPC).
Materials and Methods:
Patients with ANPC treated with CRT between September 2020 and June 2022 were retrospectively enrolled and categorized into response group (RG, n = 95) and non RGs (NRG, n = 32) based on the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The quantitative parameters from pre-treatment syMRI (longitudinal [T1] and transverse [T2] relaxation times and proton density [PD]), diffusion-weighted imaging (apparent diffusion coefficient [ADC]), and clinicopathological characteristics were compared between RG and NRG. Logistic regression analysis was applied to identify parameters independently associated with CRT response and to construct a multivariable model. The areas under the receiveroperating characteristic curve (AUC) for various diagnostic approaches were compared using the DeLong test.
Results:
The T1, T2, and PD values in the NRG were significantly lower than those in the RG (all P < 0.05), whereas no significant difference was observed in the ADC values between these two groups. Clinicopathological characteristics (Epstein–Barr virus [EBV]-DNA level, lymph node extranodal extension, clinical stage, and Ki-67 expression) exhibited significant differences between the two groups. Logistic regression analysis showed that T1, PD, EBV-DNA level, clinical stage, and Ki-67 expression had significant independent relationships with CRT response (all P < 0.05). The multivariable model incorporating these five variables yielded AUC, sensitivity, and specificity values of 0.974, 93.8% (30/32), and 91.6% (87/95), respectively.
Conclusion
SyMRI may be used for the pretreatment prediction of CRT response in ANPC. The multivariable model incorporating syMRI quantitative parameters and clinicopathological characteristics, which were independently associated with CRT response, may be a new tool for the pretreatment prediction of CRT response.
2.Synthetic MRI Combined With Clinicopathological Characteristics for Pretreatment Prediction of Chemoradiotherapy Response in Advanced Nasopharyngeal Carcinoma
Siyu CHEN ; Jiankun DAI ; Jing ZHAO ; Shuang HAN ; Xiaojun ZHANG ; Jun CHANG ; Donghui JIANG ; Heng ZHANG ; Peng WANG ; Shudong HU
Korean Journal of Radiology 2025;26(2):135-145
Objective:
To explore the feasibility of synthetic magnetic resonance imaging (syMRI) combined with clinicopathological characteristics for the pre-treatment prediction of chemoradiotherapy (CRT) response in advanced nasopharyngeal carcinoma (ANPC).
Materials and Methods:
Patients with ANPC treated with CRT between September 2020 and June 2022 were retrospectively enrolled and categorized into response group (RG, n = 95) and non RGs (NRG, n = 32) based on the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The quantitative parameters from pre-treatment syMRI (longitudinal [T1] and transverse [T2] relaxation times and proton density [PD]), diffusion-weighted imaging (apparent diffusion coefficient [ADC]), and clinicopathological characteristics were compared between RG and NRG. Logistic regression analysis was applied to identify parameters independently associated with CRT response and to construct a multivariable model. The areas under the receiveroperating characteristic curve (AUC) for various diagnostic approaches were compared using the DeLong test.
Results:
The T1, T2, and PD values in the NRG were significantly lower than those in the RG (all P < 0.05), whereas no significant difference was observed in the ADC values between these two groups. Clinicopathological characteristics (Epstein–Barr virus [EBV]-DNA level, lymph node extranodal extension, clinical stage, and Ki-67 expression) exhibited significant differences between the two groups. Logistic regression analysis showed that T1, PD, EBV-DNA level, clinical stage, and Ki-67 expression had significant independent relationships with CRT response (all P < 0.05). The multivariable model incorporating these five variables yielded AUC, sensitivity, and specificity values of 0.974, 93.8% (30/32), and 91.6% (87/95), respectively.
Conclusion
SyMRI may be used for the pretreatment prediction of CRT response in ANPC. The multivariable model incorporating syMRI quantitative parameters and clinicopathological characteristics, which were independently associated with CRT response, may be a new tool for the pretreatment prediction of CRT response.
3.Synthetic MRI Combined With Clinicopathological Characteristics for Pretreatment Prediction of Chemoradiotherapy Response in Advanced Nasopharyngeal Carcinoma
Siyu CHEN ; Jiankun DAI ; Jing ZHAO ; Shuang HAN ; Xiaojun ZHANG ; Jun CHANG ; Donghui JIANG ; Heng ZHANG ; Peng WANG ; Shudong HU
Korean Journal of Radiology 2025;26(2):135-145
Objective:
To explore the feasibility of synthetic magnetic resonance imaging (syMRI) combined with clinicopathological characteristics for the pre-treatment prediction of chemoradiotherapy (CRT) response in advanced nasopharyngeal carcinoma (ANPC).
Materials and Methods:
Patients with ANPC treated with CRT between September 2020 and June 2022 were retrospectively enrolled and categorized into response group (RG, n = 95) and non RGs (NRG, n = 32) based on the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The quantitative parameters from pre-treatment syMRI (longitudinal [T1] and transverse [T2] relaxation times and proton density [PD]), diffusion-weighted imaging (apparent diffusion coefficient [ADC]), and clinicopathological characteristics were compared between RG and NRG. Logistic regression analysis was applied to identify parameters independently associated with CRT response and to construct a multivariable model. The areas under the receiveroperating characteristic curve (AUC) for various diagnostic approaches were compared using the DeLong test.
Results:
The T1, T2, and PD values in the NRG were significantly lower than those in the RG (all P < 0.05), whereas no significant difference was observed in the ADC values between these two groups. Clinicopathological characteristics (Epstein–Barr virus [EBV]-DNA level, lymph node extranodal extension, clinical stage, and Ki-67 expression) exhibited significant differences between the two groups. Logistic regression analysis showed that T1, PD, EBV-DNA level, clinical stage, and Ki-67 expression had significant independent relationships with CRT response (all P < 0.05). The multivariable model incorporating these five variables yielded AUC, sensitivity, and specificity values of 0.974, 93.8% (30/32), and 91.6% (87/95), respectively.
Conclusion
SyMRI may be used for the pretreatment prediction of CRT response in ANPC. The multivariable model incorporating syMRI quantitative parameters and clinicopathological characteristics, which were independently associated with CRT response, may be a new tool for the pretreatment prediction of CRT response.
4.Synthetic MRI Combined With Clinicopathological Characteristics for Pretreatment Prediction of Chemoradiotherapy Response in Advanced Nasopharyngeal Carcinoma
Siyu CHEN ; Jiankun DAI ; Jing ZHAO ; Shuang HAN ; Xiaojun ZHANG ; Jun CHANG ; Donghui JIANG ; Heng ZHANG ; Peng WANG ; Shudong HU
Korean Journal of Radiology 2025;26(2):135-145
Objective:
To explore the feasibility of synthetic magnetic resonance imaging (syMRI) combined with clinicopathological characteristics for the pre-treatment prediction of chemoradiotherapy (CRT) response in advanced nasopharyngeal carcinoma (ANPC).
Materials and Methods:
Patients with ANPC treated with CRT between September 2020 and June 2022 were retrospectively enrolled and categorized into response group (RG, n = 95) and non RGs (NRG, n = 32) based on the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The quantitative parameters from pre-treatment syMRI (longitudinal [T1] and transverse [T2] relaxation times and proton density [PD]), diffusion-weighted imaging (apparent diffusion coefficient [ADC]), and clinicopathological characteristics were compared between RG and NRG. Logistic regression analysis was applied to identify parameters independently associated with CRT response and to construct a multivariable model. The areas under the receiveroperating characteristic curve (AUC) for various diagnostic approaches were compared using the DeLong test.
Results:
The T1, T2, and PD values in the NRG were significantly lower than those in the RG (all P < 0.05), whereas no significant difference was observed in the ADC values between these two groups. Clinicopathological characteristics (Epstein–Barr virus [EBV]-DNA level, lymph node extranodal extension, clinical stage, and Ki-67 expression) exhibited significant differences between the two groups. Logistic regression analysis showed that T1, PD, EBV-DNA level, clinical stage, and Ki-67 expression had significant independent relationships with CRT response (all P < 0.05). The multivariable model incorporating these five variables yielded AUC, sensitivity, and specificity values of 0.974, 93.8% (30/32), and 91.6% (87/95), respectively.
Conclusion
SyMRI may be used for the pretreatment prediction of CRT response in ANPC. The multivariable model incorporating syMRI quantitative parameters and clinicopathological characteristics, which were independently associated with CRT response, may be a new tool for the pretreatment prediction of CRT response.
5.Synthetic MRI Combined With Clinicopathological Characteristics for Pretreatment Prediction of Chemoradiotherapy Response in Advanced Nasopharyngeal Carcinoma
Siyu CHEN ; Jiankun DAI ; Jing ZHAO ; Shuang HAN ; Xiaojun ZHANG ; Jun CHANG ; Donghui JIANG ; Heng ZHANG ; Peng WANG ; Shudong HU
Korean Journal of Radiology 2025;26(2):135-145
Objective:
To explore the feasibility of synthetic magnetic resonance imaging (syMRI) combined with clinicopathological characteristics for the pre-treatment prediction of chemoradiotherapy (CRT) response in advanced nasopharyngeal carcinoma (ANPC).
Materials and Methods:
Patients with ANPC treated with CRT between September 2020 and June 2022 were retrospectively enrolled and categorized into response group (RG, n = 95) and non RGs (NRG, n = 32) based on the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The quantitative parameters from pre-treatment syMRI (longitudinal [T1] and transverse [T2] relaxation times and proton density [PD]), diffusion-weighted imaging (apparent diffusion coefficient [ADC]), and clinicopathological characteristics were compared between RG and NRG. Logistic regression analysis was applied to identify parameters independently associated with CRT response and to construct a multivariable model. The areas under the receiveroperating characteristic curve (AUC) for various diagnostic approaches were compared using the DeLong test.
Results:
The T1, T2, and PD values in the NRG were significantly lower than those in the RG (all P < 0.05), whereas no significant difference was observed in the ADC values between these two groups. Clinicopathological characteristics (Epstein–Barr virus [EBV]-DNA level, lymph node extranodal extension, clinical stage, and Ki-67 expression) exhibited significant differences between the two groups. Logistic regression analysis showed that T1, PD, EBV-DNA level, clinical stage, and Ki-67 expression had significant independent relationships with CRT response (all P < 0.05). The multivariable model incorporating these five variables yielded AUC, sensitivity, and specificity values of 0.974, 93.8% (30/32), and 91.6% (87/95), respectively.
Conclusion
SyMRI may be used for the pretreatment prediction of CRT response in ANPC. The multivariable model incorporating syMRI quantitative parameters and clinicopathological characteristics, which were independently associated with CRT response, may be a new tool for the pretreatment prediction of CRT response.
6.Preparation of Phenolic Acid-sodium Hyaluronate Copolymers and in vitro Antioxidant Activity Assessment
Xiao-Yue ZHANG ; Xiao-Na WANG ; Min JIANG ; Ting-Ting HAN ; Jin-Song GONG ; Qing-Na LI ; Su-Zhen YANG ; Jin-Song SHI
Progress in Biochemistry and Biophysics 2024;51(8):1950-1962
ObjectiveSodium hyaluronate (HA) was used as the research object to modify it with phenolic acid in order to obtain the molecular structure with better antioxidant activity or even new activity. MethodsIn this study, 5 kinds of phenolic acid-sodium hyaluronate was prepared by free radical-mediated grafting method, and the grafts with the highest grafting degree were selected to optimize the synthesis conditions. Then, grafts structure and physicochemical properties were analyzed. The grafts were characterized by IR, UV, 1H NMR, FESEM and TGA spectra. The in vitro antioxidant capacity of grafts was determined by the scavenging ability of DPPH·, ABTS+· and O2-·. ResultsAmong 5 kinds of phenolic acid-sodium hyaluronate, the grafting rate of ferulic acid-sodium hyaluronate copolymer (FA-HA) was highest , which was chosen as experimental sample in the following tests. Firstly, the reaction conditions were investigated and the highest grafting rate was (16.59±0.31) mg/g at the optimal preparation conditions. Then, FA-HA structure and physicochemical properties were analyzed. Data from UV, IR, 1H NMR analyses, TGA showed that FA were successfully grafted to HA. Compared with HA, the results of gel permeation chrematography (GPC) showed that the molecular mass distribution ofFA-HA copolymer decreased from 34.4 to 31.5 ku, but the uniformity of molecular distribution was improved. FESEM results showed that the structure of copolymer exhibited a closely connected lamellar structure with a relatively smooth surface. TGA results showed that thermal stability of FA-HA had a little decline. The antioxidant performance in vitro results showed that, during 0.25-10 g/L, FA-HA can eliminate (83.76±4.86)% DPPH·, (76.95±5.06)% ABTS+· and (83.08±2.51)% O2-· respectively at 10 g/L. which were higher than that of native HA and FA. ConclusionFA and HA were successfully grafted together by free radical grafting, and the grafted FA-HA had better antioxidant activity in vitro, which provided a theoretical basis for further research and development of phenolic acid-HA grafts.
7.Efficient biosynthesis of γ-aminobutyric acid by rationally engineering the catalytic pH range of a glutamate decarboxylase from Lactobacillus plantarum.
Jiewen XIAO ; Jin HAN ; Zhina QIAO ; Guodong ZHANG ; Wujun HUANG ; Kai QIAN ; Meijuan XU ; Xian ZHANG ; Taowei YANG ; Zhiming RAO
Chinese Journal of Biotechnology 2023;39(6):2108-2125
γ-aminobutyric acid can be produced by a one-step enzymatic reaction catalyzed by glutamic acid decarboxylase. The reaction system is simple and environmentally friendly. However, the majority of GAD enzymes catalyze the reaction under acidic pH at a relatively narrow range. Thus, inorganic salts are usually needed to maintain the optimal catalytic environment, which adds additional components to the reaction system. In addition, the pH of solution will gradually rise along with the production of γ-aminobutyric acid, which is not conducive for GAD to function continuously. In this study, we cloned the glutamate decarboxylase LpGAD from a Lactobacillus plantarum capable of efficiently producing γ-aminobutyric acid, and rationally engineered the catalytic pH range of LpGAD based on surface charge. A triple point mutant LpGADS24R/D88R/Y309K was obtained from different combinations of 9 point mutations. The enzyme activity at pH 6.0 was 1.68 times of that of the wild type, suggesting the catalytic pH range of the mutant was widened, and the possible mechanism underpinning this increase was discussed through kinetic simulation. Furthermore, we overexpressed the Lpgad and LpgadS24R/D88R/Y309K genes in Corynebacterium glutamicum E01 and optimized the transformation conditions. An optimized whole cell transformation process was conducted under 40 ℃, cell mass (OD600) 20, 100 g/L l-glutamic acid substrate and 100 μmol/L pyridoxal 5-phosphate. The γ-aminobutyric acid titer of the recombinant strain reached 402.8 g/L in a fed-batch reaction carried out in a 5 L fermenter without adjusting pH, which was 1.63 times higher than that of the control. This study expanded the catalytic pH range of and increased the enzyme activity of LpGAD. The improved production efficiency of γ-aminobutyric acid may facilitate its large-scale production.
Glutamate Decarboxylase/genetics*
;
Lactobacillus plantarum/genetics*
;
Catalysis
;
gamma-Aminobutyric Acid
;
Hydrogen-Ion Concentration
;
Glutamic Acid
8.Risk factors for infections after arthroscopic rotator cuff repair.
Jin-Jun LAI ; Xiao-Hong YU ; Yun-Gen HU ; Da-Wei BI ; Lei HAN
China Journal of Orthopaedics and Traumatology 2023;36(4):348-351
OBJECTIVE:
To explore risk factors for infections after arthroscopic rotator cuff repair, and improve the under standing for reducing infection.
METHODS:
Clinical data of 2 591 patients who underwent arthroscopic rotator cuff repair from January 2019 to January 2022 were retrospectively analyzed, including 1 265 males and 1 326 females, aged from 25 to 82 years old with an average age of (51.5±15.6) years old. They were divided into infection group(n=18) and uninfected group(n=2 573) according to whether or not patients had postoperative infection. Gender, age, smoking, diabetes, body mass index, local closure within 1 month before operation, operation time, preventive use of antibiotics, and internal fixation implantation between two groups were recorded. Univariate Logistic regression analysis screened factors associated with infections after arthroscopic rotator cuff repair. Theresultswere entered into the multivariate logistic regression analysis, screening the high risk factors for infections after arthroscopic rotator cuff repair.
RESULTS:
In 2 591 patients, 18 patients were infected after operation, infection rate was 0.69%. Univariate Logistic regression analysis showed that gender, age, operation time, antibiotic prophylaxis, internal fixation implantation were risk factors for infections after arthroscopic rotator cuff repair. Multivariate Logistic regression analysis showed male(OR=14.227), age≥65 years(OR=34.313), operation time≥2 h (OR=15.616), without antibiotic prophylaxis(OR=4.891), and internal fixation implantation(OR=5.103) were major risk factors for infection after arthroscopic rotator cuff repair(P<0.05).
CONCLUSION
Male, age≥65 years, operation time≥2 h, without antibiotic prophylaxis and internal fixation implantation were independent risk factors for infection after arthroscopic rotator cuff repair. Early diagnosis and timely treatment should be carried out to reduce the incidence of infection.
Female
;
Humans
;
Male
;
Adult
;
Middle Aged
;
Aged
;
Aged, 80 and over
;
Rotator Cuff
;
Rotator Cuff Injuries/surgery*
;
Retrospective Studies
;
Arthroscopy/adverse effects*
;
Risk Factors
;
Treatment Outcome
9.Xenopus GLP-1-based glycopeptides as dual glucagon-like peptide 1 receptor/glucagon receptor agonists with improved in vivo stability for treating diabetes and obesity.
Qiang LI ; Qimeng YANG ; Jing HAN ; Xiaohan LIU ; Junjie FU ; Jian YIN
Chinese Journal of Natural Medicines (English Ed.) 2022;20(11):863-872
Peptide dual agonists toward both glucagon-like peptide 1 receptor (GLP-1R) and glucagon receptor (GCGR) are emerging as novel therapeutics for the treatment of type 2 diabetes mellitus (T2DM) patients with obesity. Our previous work identified a Xenopus GLP-1-based dual GLP-1R/GCGR agonist termed xGLP/GCG-13, which showed decent hypoglycemic and body weight lowering activity. However, the clinical utility of xGLP/GCG-13 is limited due to its short in vivo half-life. Inspired by the fact that O-GlcNAcylation of intracellular proteins leads to increased stability of secreted proteins, we rationally designed a panel of O-GlcNAcylated xGLP/GCG-13 analogs as potential long-acting GLP-1R/ GCGR dual agonists. One of the synthesized glycopeptides 1f was found to be equipotent to xGLP/GCG-13 in cell-based receptor activation assays. As expected, O-GlcNAcylation effectively improved the stability of xGLP/GCG-13 in vivo. Importantly, chronic administration of 1f potently induced body weight loss and hypoglycemic effects, improved glucose tolerance, and normalized lipid metabolism and adiposity in both db/db and diet induced obesity (DIO) mice models. These results supported the hypothesis that glycosylation is a useful strategy for improving the in vivo stability of GLP-1-based peptides and promoted the development of dual GLP-1R/GCGR agonists as antidiabetic/antiobesity drugs.
Mice
;
Animals
;
Glucagon-Like Peptide 1/metabolism*
;
Receptors, Glucagon/therapeutic use*
;
Xenopus laevis/metabolism*
;
Diabetes Mellitus, Type 2/drug therapy*
;
Glycopeptides/therapeutic use*
;
Obesity/drug therapy*
;
Hypoglycemic Agents/pharmacology*
;
Peptides/pharmacology*
10.Engineering the 182 site of cyclodextrin glucosyltransferase for glycosylated genistein synthesis.
Baocheng CHAI ; Yulin JIANG ; Ye NI ; Ruizhi HAN
Chinese Journal of Biotechnology 2022;38(2):749-759
Genistein and its monoglucoside derivatives play important roles in food and pharmaceuticals fields, whereas their applications are limited by the low water solubility. Glycosylation is regarded as one of the effective approaches to improve water solubility. In this paper, the glycosylation of sophoricoside (genistein monoglucoside) was investigated using a cyclodextrin glucosyltransferase from Penibacillus macerans (PmCGTase). Saturation mutagenesis of D182 from PmCGTase was carried out. Compared with the wild-type (WT), the variant D182C showed a 13.42% higher conversion ratio. Moreover, the main products sophoricoside monoglucoside, sophoricoside diglucoside, and sophoricoside triglucoside of the variant D182C increased by 39.35%, 56.05% and 64.81% compared with that of the WT, respectively. Enzymatic characterization showed that the enzyme activities (cyclization, hydrolysis, disproportionation) of the variant D182C were higher than that of the WT, and the optimal pH and temperature of the variant D182C were 6 and 40℃, respectively. Kinetics analysis showed the variant D182C has a lower Km value and a higher kcat/Km value than that of the WT, indicating the variant D182C has enhanced affinity to substrate. Structure modeling and docking analysis demonstrated that the improved glycosylation efficiency of the variant D182C may be attributed to the increased interactions between residues and substrate.
Cyclodextrins
;
Genistein
;
Glucosyltransferases/metabolism*
;
Glycosylation
;
Kinetics

Result Analysis
Print
Save
E-mail