1.Human epidermal growth factor gel for pin tract infection following halo-pelvic ring traction procedure in patients with severe spinal deformity.
Yu-Liang LOU ; Feng HONG ; Can-Feng WANG ; Hui FEI ; Wei-Bin DU ; Ren-Fu QUAN
China Journal of Orthopaedics and Traumatology 2025;38(8):816-821
OBJECTIVE:
To explore the efficacy and safety of human epidermal growth factor gel in the treatment of pin tract infections after surgery in patients with severe spinal deformity.
METHODS:
A retrospective case-control study was conducted to analyze the clinical data of 26 patients with pin tract infections after skull-pelvic ring traction for severe spinal deformity admitted from February 2019 to May 2022. Among them, 11 were male and 15 were female;the age ranged from 18 to 31 years, with an average of (24.1±4.3) years;the Cobb angle ranged 80.3° to 120.7°, with an average of (88.6±10.2)°;there were 52 iliac traction pins, 104 pin tract openings, and 38 pin tract infections. According to the Checketts-Otterbum classification, there were 11 infections of gradeⅠ, 13 infections of gradeⅡ, 10 infections of grade Ⅲ, and 4 infections of grade Ⅳ. The patients were divided into the conventional dressing change group (13 cases) and the growth factor group (13 cases) by coin flipping. Clinical efficacy was evaluated by recording the visual analogue scale(VAS) score during dressing change, duration of dressing change, cost of dressing change, positive rate of bacterial culture, wound improvement rate, and wound improvement time.
RESULTS:
There were no statistically significant differences in VAS or duration of dressing change between the two groups (P>0.05). The cost of dressing change was (800.0±59.5) yuan in the conventional dressing change group and (1 179.5±80.9) yuan in the growth factor group, with a statistically significant difference (P<0.05). There was no statistically significant difference in the positive rate of bacterial culture between the two groups (P>0.05). In the conventional dressing change group, within 20 pin tract infections, 2 infections achieved wound healing, 7 infections showed improvement, and 11 infections were ineffective;in the growth factor group, within 18 pin tract infections 5 infections achieved wound healing, 8 infections showed improvement, and 5 infections were ineffective, with a statistically significant difference between the two groups (P<0.05). The wound healing time was (22.8±4.9) days in the conventional dressing change group and (14.2±2.5) days in the growth factor group, with a statistically significant difference (P<0.05). No complications occurred in either group.
CONCLUSION
The application of human epidermal growth factor gel in the treatment of pin tract infections after skull-pelvic ring surgery in patients with severe spinal deformity is easy to operate, does not increase patient pain, and has significant efficacy. It shortens wound healing time, effectively promotes wound healing, and has good safety and high cost-effectiveness.
Humans
;
Male
;
Female
;
Adult
;
Adolescent
;
Retrospective Studies
;
Case-Control Studies
;
Young Adult
;
Epidermal Growth Factor/therapeutic use*
;
Traction/adverse effects*
;
Gels
;
Bone Nails/adverse effects*
;
Surgical Wound Infection/drug therapy*
2.Metabolic engineering of Escherichia coli for efficient biosynthesis of L-citrulline.
Linfeng XU ; Wenwen YU ; Xuewen ZHU ; Quanwei ZHANG ; Yaokang WU ; Jianghua LI ; Guocheng DU ; Xueqin LV ; Jian CHEN ; Long LIU
Chinese Journal of Biotechnology 2025;41(1):242-255
L-citrulline is a nonprotein amino acid that plays an important role in human health and has great market demand. Although microbial cell factories have been widely used for biosynthesis, there are still challenges such as genetic instability and low efficiency in the biosynthesis of L-citrulline. In this study, an efficient, plasmid-free, non-inducible L-citrulline-producing strain of Escherichia coli BL21(DE3) was engineered by combined strategies. Firstly, a chassis strain capable of synthesizing L-citrulline was constructed by block of L-citrulline degradation and removal of feedback inhibition, with the L-citrulline titer of 0.43 g/L. Secondly, a push-pull-restrain strategy was employed to enhance the L-citrulline biosynthesis, which realized the L-citrulline titer of 6.0 g/L. Thirdly, the NADPH synthesis and L-citrulline transport were strengthened to promote the synthesis efficiency, which achieved the L-citrulline titer of 11.6 g/L. Finally, fed-batch fermentation was performed with the engineered strain in a 3 L fermenter, in which the L-citrulline titer reached 44.9 g/L. This study lays the foundation for the industrial production of L-citrulline and provides insights for the modification of other amino acid metabolic networks.
Citrulline/biosynthesis*
;
Escherichia coli/genetics*
;
Metabolic Engineering/methods*
;
Fermentation
;
NADP/biosynthesis*
3.Functional analysis of functional membrane microdomains in the biosynthesis of menaquinone-7.
Yajun DONG ; Shixiu CUI ; Yanfeng LIU ; Jianghua LI ; Guocheng DU ; Xueqin LÜ ; Long LIU
Chinese Journal of Biotechnology 2023;39(6):2215-2230
Functional membrane microdomains (FMMs) that are mainly composed of scaffold proteins and polyisoprenoids play important roles in diverse cellular physiological processes in bacteria. The aim of this study was to identify the correlation between MK-7 and FMMs and then regulate the MK-7 biosynthesis through FMMs. Firstly, the relationship between FMMs and MK-7 on the cell membrane was determined by fluorescent labeling. Secondly, we demonstrated that MK-7 is a key polyisoprenoid component of FMMs by analyzing the changes in the content of MK-7 on cell membrane and the changes in the membrane order before and after destroying the integrity of FMMs. Subsequently, the subcellular localization of some key enzymes in MK-7 synthesis was explored by visual analysis, and the intracellular free pathway enzymes Fni, IspA, HepT and YuxO were localized to FMMs through FloA to achieve the compartmentalization of MK-7 synthesis pathway. Finally, a high MK-7 production strain BS3AT was successfully obtained. The production of MK-7 reached 300.3 mg/L in shake flask and 464.2 mg/L in 3 L fermenter.
Bacillus subtilis/metabolism*
;
Vitamin K 2/metabolism*
;
Bioreactors/microbiology*
;
Membrane Microdomains/metabolism*
4.Development of biosensors highly responsive to N-acetylneuraminic acid in Bacillus subtilis.
Jiaqi SUN ; Yanting CAO ; Xueqin LÜ ; Jianghua LI ; Long LIU ; Guocheng DU ; Jian CHEN ; Yanfeng LIU
Chinese Journal of Biotechnology 2023;39(5):2502-2516
Bacillus subtilis is recognized as a generally-regarded-as-safe strain, and has been widely used in the biosynthesis of high value-added products, including N-acetylneuraminic acid (NeuAc) which is widely used as a nutraceutical and a pharmaceutical intermediate. Biosensors responding to target products are widely used in dynamic regulation and high-throughput screening in metabolic engineering to improve the efficiency of biosynthesis. However, B. subtilis lacks biosensors that can efficiently respond to NeuAc. This study first tested and optimized the transport capacity of NeuAc transporters, and obtained a series of strains with different transport capacities for testing NeuAc-responsive biosensors. Subsequently, the binding site sequence of Bbr_NanR responding to NeuAc was inserted into different sites of the constitutive promoter of B. subtilis, and active hybrid promoters were obtained. Next, by introducing and optimizing the expression of Bbr_NanR in B. subtilis with NeuAc transport capacity, we obtained an NeuAc-responsive biosensor with wide dynamic range and higher activation fold. Among them, P535-N2 can sensitively respond to changes in intracellular NeuAc concentration, with the largest dynamic range (180-20 245) AU/OD. P566-N2 shows a 122-fold of activation, which is 2 times of the reported NeuAc-responsive biosensor in B. subtilis. The NeuAc-responsive biosensor developed in this study can be used to screen enzyme mutants and B. subtilis strains with high NeuAc production efficiency, providing an efficient and sensitive analysis and regulation tool for biosynthesis of NeuAc in B. subtilis.
N-Acetylneuraminic Acid/metabolism*
;
Bacillus subtilis/metabolism*
;
Promoter Regions, Genetic/genetics*
;
Binding Sites
;
Biosensing Techniques
5.Improving the position specificity of Themomyces lanuginosus lipase based on semi-rational design.
Yadi MA ; Cuiping YOU ; Guoqiang ZHANG ; Jianghua LI ; Guocheng DU
Chinese Journal of Biotechnology 2023;39(8):3481-3493
Diacylglycerol (DAG) is an intermediate product in lipid metabolism and plays an important physiological role in human body. It is mainly prepared by hydrolyzing lipid with lipase. However, research on the detection method of 1, 2-diacylglycerol (1, 2-DAG) and 1, 3-diacylglycerol (1, 3-DAG) and catalytic specificity of lipase was not enough, which limits its wide application. To address these challenges, an efficient quantitative detection method was first established for 1, 2-DAG (0.025-0.200 g/L) and 1, 3-DAG (0.025-0.150 g/L) by combining supercritical fluid chromatography with evaporative light scattering detector and optimizing the detection and analysis parameters. Based on the molecular docking between Thermomyces lanuginosus lipase (TLL) and triolein, five potential substrate binding sites were selected for site-specific saturation mutation to construct a mutation library for enzyme activity and position specificity screening. The specificity of sn-1, 3 of the I202V mutant was the highest in the library, which was 11.7% higher than the specificity of the wild type TLL. In summary, the position specificity of TLL was modified based on a semi-rational design, and an efficient separation and detection method of DAG isomers was also established, which provided a reference for the study of the catalytic specificity of lipase.
Humans
;
Diglycerides
;
Molecular Docking Simulation
;
Binding Sites
;
Catalysis
;
Lipase/genetics*
6.Preparation, characterization and activity evaluation of Spirulina-chitooligosaccharides capable of inhibiting biofilms.
Ruijie SUN ; Tong XU ; Yangyang LIU ; Liming ZHANG ; Siming JIAO ; Yuchen ZHANG ; Xiaodong GAO ; Zhuo WANG ; Yuguang DU
Chinese Journal of Biotechnology 2023;39(10):4135-4149
The biofilms formed by pathogenic microorganisms seriously threaten human health and significantly enhance drug resistance, which urgently call for developing drugs specifically targeting on biofilms. Chitooligosaccharides extracted from shrimp and crab shells are natural alkaline oligosaccharides with excellent antibacterial effects. Nevertheless, their inhibition efficacy on biofilms still needs to be improved. Spirulina (SP) is a microalga with negatively charged surface, and its spiral structure facilitates colonization in the depth of the biofilm. Therefore, the complex of Spirulina and chitooligosaccharides may play a synergistic role in killing pathogens in the depth of biofilm. This research first screened chitooligosaccharides with significant bactericidal effects. Subsequently, Spirulina@Chitooligosaccharides (SP@COS complex was prepared by combining chitooligosaccharides with Spirulina through electrostatic adsorption. The binding of the complex was characterized by zeta potential, z-average size, and fluorescence labeling. Ultraviolet-visible spectroscopy (UV-Vis) showed the encapsulation efficiency and the drug loading efficiency reached up to 90% and 16%, respectively. The prepared SP@COS2 exhibited a profound synergistic inhibition effect on bacterial and fungal biofilms, which was mainly achieved by destroying the cell structure of the biofilm. These results demonstrate the potential of Spirulina-chitooligosaccharides complex as a biofilm inhibitor and provide a new idea for addressing the harm of pathogenic microorganisms.
Humans
;
Spirulina
;
Anti-Bacterial Agents/chemistry*
;
Chitosan/pharmacology*
;
Biofilms
;
Chitin/pharmacology*
7.Clinical outcomes of reverse shoulder arthroplasty for the treatment of failed fixation of proximal humeral fracrtures in the elderly patients.
Wei-Bin DU ; Yi DONG ; Fu-Xiang SHEN ; Rong-Liang CHEN ; Shang-Ju XIE ; Keng YU ; Guo-Ping CAO
China Journal of Orthopaedics and Traumatology 2023;36(2):110-115
OBJECTIVE:
To evaluate the clinical outcomes of reverse total shoulder arthroplasty as a revision procedure for the failed fixation of proximal humeral fractures in the elderly patients.
METHODS:
A retrospective analysis was performed on 8 patients with failed internal fixation of proximal humeral fractures from May 2014 to March 2020, including 3 males and 5 females, aged from 65 to 75 years old. All 8 patients underwent reverse total shoulder arthroplasty, and the mean time between initial fixation and reverse total shoulder arthroplasty ranged from 8 to 16 months. Range of motion(ROM), University of California at Los Angeles(UCLA) shoulder score, visual analogue scale (VAS), self-rating anxiety scale(SAS), and Constant-Murley score of shoulder function were assessed pre-operatively and at the last follow-up. Complications relating to the surgery were recorded.
RESULTS:
All 8 patients successfully followed up. The mean follow-up after reverse total shoulder arhroplasty ranged from 16 to 28 months. The range of motion (forward flexion, external rotation, abduction and internal rotation) of the affected shoulder was significantly improved after surgery, and the post-operative VAS, SAS and UCLA scores were also significantly improved. For the Constant-Murley score of shoulder joint function, the total scores and the subscores of pain, daily activities, range of motion and strength test at the last follow-up were all significantly improved. Scapular glenoid notch was observed in patient, which was evaluated as grade 1 on imaging. All the other patients did not develop specific or non-specific complications.
CONCLUSION
Reverse total shoulder arhroplasty is an appropriate treatment as a revision surgery for failed fixation of proximal humeral fractures. It has shown satisfactory clinical outcomes, accelerating the rehabilitation of shoulder function and improving the quality of life.
Male
;
Female
;
Humans
;
Aged
;
Shoulder/surgery*
;
Arthroplasty, Replacement, Shoulder/methods*
;
Retrospective Studies
;
Treatment Outcome
;
Quality of Life
;
Shoulder Joint/surgery*
;
Shoulder Fractures/surgery*
;
Humerus/surgery*
;
Range of Motion, Articular
8. 6-desulfated heparin inhibits heparan sulfate shedding and epithelial cell damage during bleomycin induced pulmonary injury
Jing YANG ; Xiao-Ni LIU ; Qing-Qing WU ; Yan-Duo ZHAI ; Jing-Hua CHEN ; Yi-Shu YAN ; Shan-Shan DU ; Yang JI ; Xin-Hui XING
Chinese Pharmacological Bulletin 2022;38(8):1147-1155
Aim To study the effect of different hepa- ry.Methods First, heparin derivatives with different rin sulfation patterns on bleomycin induced lung inju- sulfation patterns,6-desulfated heparin (6-DeH) and N-acetvlated heparin ( N-AcH ) , were synthesized.Secondly, the effect of these compounds on BLM-in¬duced bronchial epithelial cell ( BEARS-2B) injury was evaluated via lactate dehydrogenase activity, MTT experiment, Annexin V/ PI staining and Hoechst 33258 staining.Then , immunofluorescence staining and West¬ern blotting were used to investigate the shedding of Svndecan-1 and the activation of c-Met by 6-DeH/Akt j j signaling pathway.Finally, a BLM-induced lung injury mouse model was used to further verify the protective effect of 6-DeH by HE staining, Svndecan-1 immunos- taining,bodv weight change,and survival rate.Results In the BLM-induced BEARS-2B injury model, 6- DeH was selected as the best candidate, which exerted their effect by competitively binding to BLM, thereby reducing the damage of heparan sulfate barrier (Svnde- can-1 ) on cell surface, and improving cell survival by activating the downstream c-Met/Akt pathway.In the BLM-induced lung injury mouse model, it was further confirmed that 6-DeH reduced the shedding of Svnde- can-1 in the early stage, and delayed the lung injury and fibrosis process.Conclusions 6-DeH protects the bronchial epithelial cells against BLM-induced lung in¬jur)' through inhibiting the shedding of Svndecan-1 and activating the c-Met/Akt signaling pathway.
9.Construction and optimization of ergothioneine-producing Escherichia coli.
Li WANG ; Yang WANG ; Jianghua LI ; Guocheng DU ; Zhen KANG
Chinese Journal of Biotechnology 2022;38(2):796-806
Ergothioneine (ERG) is a natural antioxidant that has been widely used in the fields of food, medicine and cosmetics. Compared with traditional plant extraction and chemical synthesis approaches, microbial synthesis of ergothioneine has many advantages, such as the short production cycle and low cost, and thus has attracted intensive attention. In order to engineer an ergothioneine high-yielding Escherichia coli strain, the ergothioneine synthesis gene cluster egtABCDE from Mycobacterium smegmatis and egt1 from Schizosaccharomyces pombe were introduced into E. coli BL21(DE3) to generate a strain E1-A1 harboring the ergothioneine biosynthesis pathway. As a result, (95.58±3.2) mg/L ergothioneine was produced in flask cultures. To further increase ergothioneine yield, the relevant enzymes for biosynthesis of histidine, methionine, and cysteine, the three precursor amino acids of ergothioneine, were overexpressed. Individual overexpression of serAT410STOP and thrA resulted in an ergothioneine titer of (134.83±4.22) mg/L and (130.26±3.34) mg/L, respectively, while co-overexpression of serAT410STOP and thrA increased the production of ergothioneine to (144.97±5.40) mg/L. Eventually, by adopting a fed-batch fermentation strategy in 3 L fermenter, the optimized strain E1-A1-thrA-serA* produced 548.75 mg/L and 710.53 mg/L ergothioneine in glucose inorganic salt medium and rich medium, respectively.
Culture Media
;
Ergothioneine/metabolism*
;
Escherichia coli/metabolism*
;
Fermentation
;
Histidine/metabolism*
;
Metabolic Engineering
10.EGCG and ECG induce apoptosis and decrease autophagy via the AMPK/mTOR and PI3K/AKT/mTOR pathway in human melanoma cells.
Bing-Xin DU ; Pei LIN ; Jun LIN
Chinese Journal of Natural Medicines (English Ed.) 2022;20(4):290-300
Catechins have been proven to exert antitumor effects in different kinds of cancers. However, the underlying mechanisms have not been completely clarified yet. This study aimed to assess the effects and mechanisms of (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG) on human melanoma skin A375 cells. Results showed that EGCG and ECG inhibited the proliferation of A375 cells and ECG showed better inhibitory effect. Flow cytometry analysis had shown that EGCG and ECG induced apoptosis and led to cell cycle arrest. EGCG and ECG decreased Bcl-2 expression and upregulated Caspase-3 protein level, indicating the development of apoptosis. Furthermore, EGCG and ECG could decreased mitochondrial membrane potential of A375 cells. In addition, the expression of Beclin-1, LC3 and Sirt3 were downregulated at protein levels, which known to be associated with autophagy. After autophagy was increased by rapamycin, the apoptotic trend was not change, indicating that apoptosis and autophagy are independent. Mechanistically, EGCG and ECG treatments decreased phosphorylated-AMPK (p-AMPK) and increased the ratios of p-PI3K, p-AKT and p-mTOR in melanoma cells. Conclusively, EGCG and ECG induced apoptosis via mitochondrial signaling pathway, downregulated autophagy through modulating the AMPK/mTOR and PI3K/AKT/mTOR signaling pathway. It indicated that EGCG and ECG may be utilized in human melanoma treatment.
AMP-Activated Protein Kinases/genetics*
;
Apoptosis
;
Autophagy
;
Catechin/analogs & derivatives*
;
Electrocardiography
;
Humans
;
Melanoma/drug therapy*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*

Result Analysis
Print
Save
E-mail