1.Application of Huangkui Capsules in Diabetic Kidney Disease: A Review
Jia LUO ; Beile JIANG ; Qiuxiang HE ; Shilong LU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):314-324
Diabetic kidney disease (DKD) is a kidney disease caused by hyperglycemia,which is one of the most common microvascular complications of diabetes. Due to the high incidence of diabetes,the incidence of DKD has also increased year by year,and DKD has become a global public health problem. The pathogenesis of DKD is related to mechanisms such as oxidative stress,inflammation,renal fibrosis,and decreased mitophagy activity,which are developed under a variety of complex mechanisms. In traditional Chinese medicine,it is believed that the incidence of DKD is closely related to damp heat. Therefore,it is necessary to grasp the treatment method of clearing heat and removing dampness in clinical medication. Huangkui Capsules (HKC) have the effect of clearing damp heat,detoxifying, and detumescence. Because of its unique curative effect on DKD,HKC is often used in the treatment of DKD. HKC plays a role in the treatment of DKD with a variety of pharmacokinetic and pharmacodynamic processes. In many laboratory studies,it has been found that the specific mechanisms of HKC in the treatment of DKD include increasing mitophagy,reducing mitochondrial damage,reducing renal fibrosis,controlling inflammatory response,and inhibiting oxidative stress,which can achieve the purpose of reducing renal damage and promoting renal function. Some clinical studies have also verified that the application of HKC alone can exert renal protective function through anti-inflammatory,anti-oxidative stress,anti-renal fibrosis effects,as well as reduction of urinary protein. Since DKD is not a single injury of renal function,it is often accompanied by problems in blood pressure,blood lipids,blood circulation,body immunity, and other aspects. Therefore,the combination of HKC with other drugs can often achieve more comprehensive results,improve the advantages of various drugs,and improve the therapeutic effect. The combination of drugs such as antihypertensive,lipid-lowering, vascular circulation improvement,immunity inhibition,and anti-oxidative stress with HKC has achieved good results. In addition,HKC is often used in combination with other Chinese patent medicines in clinics. The application of HKC in the treatment of DKD has made some progress,but there are still many places worthy of further study,and the research on the mechanism of HKC is not comprehensive enough. The research on its long-term effect and safety in clinical application is relatively lacking,and the drug variety is relatively single when combined with certain drugs. These problems deserve further attention. Finally,it is necessary to pay attention to the promotion and application of HKC in clinical practice so that HKC can be better applied in clinical practice and better solve practical problems for patients.
2.Application of Huangkui Capsules in Diabetic Kidney Disease: A Review
Jia LUO ; Beile JIANG ; Qiuxiang HE ; Shilong LU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):314-324
Diabetic kidney disease (DKD) is a kidney disease caused by hyperglycemia,which is one of the most common microvascular complications of diabetes. Due to the high incidence of diabetes,the incidence of DKD has also increased year by year,and DKD has become a global public health problem. The pathogenesis of DKD is related to mechanisms such as oxidative stress,inflammation,renal fibrosis,and decreased mitophagy activity,which are developed under a variety of complex mechanisms. In traditional Chinese medicine,it is believed that the incidence of DKD is closely related to damp heat. Therefore,it is necessary to grasp the treatment method of clearing heat and removing dampness in clinical medication. Huangkui Capsules (HKC) have the effect of clearing damp heat,detoxifying, and detumescence. Because of its unique curative effect on DKD,HKC is often used in the treatment of DKD. HKC plays a role in the treatment of DKD with a variety of pharmacokinetic and pharmacodynamic processes. In many laboratory studies,it has been found that the specific mechanisms of HKC in the treatment of DKD include increasing mitophagy,reducing mitochondrial damage,reducing renal fibrosis,controlling inflammatory response,and inhibiting oxidative stress,which can achieve the purpose of reducing renal damage and promoting renal function. Some clinical studies have also verified that the application of HKC alone can exert renal protective function through anti-inflammatory,anti-oxidative stress,anti-renal fibrosis effects,as well as reduction of urinary protein. Since DKD is not a single injury of renal function,it is often accompanied by problems in blood pressure,blood lipids,blood circulation,body immunity, and other aspects. Therefore,the combination of HKC with other drugs can often achieve more comprehensive results,improve the advantages of various drugs,and improve the therapeutic effect. The combination of drugs such as antihypertensive,lipid-lowering, vascular circulation improvement,immunity inhibition,and anti-oxidative stress with HKC has achieved good results. In addition,HKC is often used in combination with other Chinese patent medicines in clinics. The application of HKC in the treatment of DKD has made some progress,but there are still many places worthy of further study,and the research on the mechanism of HKC is not comprehensive enough. The research on its long-term effect and safety in clinical application is relatively lacking,and the drug variety is relatively single when combined with certain drugs. These problems deserve further attention. Finally,it is necessary to pay attention to the promotion and application of HKC in clinical practice so that HKC can be better applied in clinical practice and better solve practical problems for patients.
3.Construction and application of the "Huaxi Hongyi" large medical model
Rui SHI ; Bing ZHENG ; Xun YAO ; Hao YANG ; Xuchen YANG ; Siyuan ZHANG ; Zhenwu WANG ; Dongfeng LIU ; Jing DONG ; Jiaxi XIE ; Hu MA ; Zhiyang HE ; Cheng JIANG ; Feng QIAO ; Fengming LUO ; Jin HUANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):587-593
Objective To construct large medical model named by "Huaxi HongYi"and explore its application effectiveness in assisting medical record generation. Methods By the way of a full-chain medical large model construction paradigm of "data annotation - model training - scenario incubation", through strategies such as multimodal data fusion, domain adaptation training, and localization of hardware adaptation, "Huaxi HongYi" with 72 billion parameters was constructed. Combined with technologies such as speech recognition, knowledge graphs, and reinforcement learning, an application system for assisting in the generation of medical records was developed. Results Taking the assisted generation of discharge records as an example, in the pilot department, after using the application system, the average completion times of writing a medical records shortened (21 min vs. 5 min) with efficiency increased by 3.2 time, the accuracy rate of the model output reached 92.4%. Conclusion It is feasible for medical institutions to build independently controllable medical large models and incubate various applications based on these models, providing a reference pathway for artificial intelligence development in similar institutions.
4.Association of short-term exposure to polycyclic aromatic hydrocarbons in ambient fine particulate matter with resident mortality: a case-crossover study
Sirong WANG ; Zhi LI ; Yanmei CAI ; Chunming HE ; Huijing LI ; Yi ZHENG ; Lu LUO ; Ruijun XU ; Yuewei LIU ; Huoqiang XIE ; Qinqin JIANG
Journal of Public Health and Preventive Medicine 2025;36(6):6-11
Objective To quantitatively assess the association of short-term exposure to polycyclic aromatic hydrocarbons (PAHs) in ambient fine particulate matter (PM2.5) with residents mortality. Methods A time-stratified case-crossover study was conducted from 2020 to 2022 among 10606 non-accidental residents by using the Guangzhou Cause of Death Surveillance System in Conghua District, Guangzhou. Exposure levels of PAHs in PM2.5 and meteorological data during the study period were obtained from the Center for Disease Control and Prevention in Conghua District and the China Meteorological Administration Land Data Assimilation System (CLDAS-V2.0), respectively. Conditional Poisson regression model was used to estimate the exposure-response association between PAHs and the mortality risk. Results Fluoranthene, chrysene, benzo[k]fluoranthene, benzo[a]pyrene, and indeno[1,2,3-cd]pyrene were significantly associated with an increased risk of mortality. For every one interquartile range increase in exposure levels, the non-accidental mortality risks increased by 8.33% (95% CI: 1.80%, 15.27%), 4.67% (95% CI: 1.86%, 7.57%), 6.07% (95% CI: 2.08%, 10.21%), 4.62% (95% CI: 1.85%, 7.47%), and 4.70% (95% CI: 0.53%, 9.03%), respectively. The estimated non accidental deaths attributable to exposure to fluoranthene, chrysene, benzo[k]fluorine, benzo[a]pyrene and indine[1,2,3-cd]pyrene were 5.91%, 6.08%, 6.51%, 6.46%, and 4.21%, respectively. Conclusions Short-term exposure to PAHs in PM2.5, including fluoranthene, chrysene, benzo[k]fluoranthene, benzo[a]pyrene and indine[1,2,3-cd]pyrene, was significantly associated with an increased risk of mortality among residents.
5.Impact of cold circulation liquid temperature on ablation focus morphology of microwave ablation for porcine liver in vitro
Xia LUO ; Ping HE ; Xin YANG ; Juying ZHANG ; Qiong JIANG ; Linli FENG ; Hanmei LI ; Xiaoqing TANG ; You YANG ; Jinhong YU
Chinese Journal of Interventional Imaging and Therapy 2024;21(5):294-297
Objective To observe the impact of cold circulation liquid temperature on ablation focus morphology of microwave ablation(MWA)for in vitro porcine liver tissue.Methods Twenty in vitro fresh porcine liver blocks were randomly divided into ice water circulation group(group A)and normal temperature circulation group(group B),respectively.Ten target ablations in each subgroups in group A and group B,i.e.A1 and B1(50 W,1 min),A2 and B2(50 W,5 min),A3 and B3(60 W,1 min),A4 and B4(60 W,5 min),A5 and B5(70 W,1 min)as well as A6 and B6(70 W,5 min)subgroups were performed using different ablation power(50,60,70 W)and ablation time(1,5 min),respectively.Then the morphology indexes of ablation foci,including longitudinal diameter(LD),transverse diameter(TD),roundness index(RI)and volume(V)were compared between subgroups in group A and B,also among subgroups within group A and B.Results Under the same ablation power and time,LD of ablation foci in subgroups of group A were all smaller than those of group B(all P<0.05).Significant differences of RI of ablation foci were found between A1 and B1,A2 and B2,A4 and B4,A5 and B5 as well as A6 and B6 subgroups(all P<0.05),but not between A3 and B3 subgroups(P>0.05).However,the main effect of cold circulation liquid temperature on ablation focus TD(F=1.125)nor V(F=3.332)was not significant(both P≥0.05).Under the same cold circulation liquid temperature,significant differences of the morphology indexes of ablation foci were detected between A1 and A2,A3 and A4 as well as A5 and A6 subgroups,also between corresponding subgroups in group B(all P<0.05).Conclusion During MWA for in vitro porcine liver tissue under constant ablation power and time,taken ice water as the cold circulation liquid was benefit to ablation focus shaped spherically.With the extension of ablation time,the larger the ablation focus,the higher the RI.
6.Contrast-Enhanced Ultrasound in the Differential Diagnosis of Gallbladder Polypoid Lesions:A Multicenter Study
Ligang JIA ; Xiang FEI ; Xiang JING ; Mingxing LI ; Fang NIE ; Dong JIANG ; Shaoshan TANG ; Wei ZHANG ; Hong DING ; Tao SONG ; Qi ZHOU ; Bei ZHANG ; Zhixia SUN ; Xiaojuan MA ; Nianan HE ; Fang LI ; Yingqiao ZHU ; Wen CHENG ; Yukun LUO
Chinese Journal of Medical Imaging 2024;32(11):1147-1154
Purpose To explore the value of contrast-enhanced ultrasound(CEUS)in the differential diagnosis of gallbladder polypoid lesions(GPLs)(diameter≥10 mm).Materials and Methods A prospective enrollment of 229 patients with GPLs who underwent cholecystectomy in 17 hospitals from December 1 2021 to June 30 2024 was conducted to analyze the relationship between general data,conventional ultrasound,CEUS characteristics and the nature of GPLs.Multivariate Logistic regression was employed to identify independent risk factors for neoplastic polyps,the differential diagnostic value of different indicators was compared.Results Among 229 patients with GPLs,there were 108 cases of cholesterol polyps,102 cases of adenoma and 19 cases of gallbladder cancer.Age(Z=-4.476,P<0.001),polyp number(χ2=15.561,P<0.001),diameter(Z=-8.149,P<0.001),echogenicity(χ2=9.241,P=0.010),vascularity(χ2=23.107,P<0.001),enhancement intensity(χ2=47.610,P<0.001),enhancement pattern(χ2=6.468,P=0.011),vascular type(χ2=84.470,P<0.001),integrity of gallbladder wall(χ2=7.662,P=0.006)and stalk width(Z=-9.831,P<0.001)between cholesterol polyps and neoplastic polyps were statistically significant.Age,location,diameter,echogenicity,enhancement pattern,vascular type and stalk width between adenoma and gallbladder cancer were statistically significant(Z=-4.333,-3.902,-5.042,all P<0.05).Multivariate Logistic regression analysis showed that hyper-enhancement,branched vascular type and stalk width were independent risk factors for neoplastic polyps(OR=4.563,5.770,3.075,all P<0.001).The combination of independent risk factors was better than single factor and diameter in the differential diagnosis of cholesterol polyps and neoplastic polyps(all P<0.01).Conclusion CEUS can effectively identify the nature of GPLs and provide a valuable imaging reference for the selection of treatment methods.
7.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
8.Construction of risk prediction model for predicting death or readmission in acute heart failure patients during vulnerable phase based on machine learning
Jing ZENG ; Xiaolong HE ; Huajuan HU ; Xiaoyu LUO ; Zhinian GUO ; Yunlong CHEN ; Min WANG ; Jiang WANG
Journal of Army Medical University 2024;46(7):738-745
Objective To construct risk prediction models of death or readmission in patients with acute heart failure(AHF)during the vulnerable phase based on machine learning algorithms and screen the optimal model.Methods A total of 651 AHF patients with admitted to Department of Cardiology of the Second Affiliated Hospital of Army Medical University from October 2019 to July 2021 were included.The clinical data consisting of admission vital signs,comorbidities and laboratory results were collected from electronic medical records.The composite endpoint was defined as all-cause death or readmission for worsening heart failure within 3 months after discharge.The patients were divided into a training set(521 patients)and a test set(130 patients)in a ratio of 8:2 through the simple random sampling.Six machine learning models were developed,including logistic regression(LR),random forest(RF),decision tree(DT),light gradient boosting machine(LGBM),extreme gradient boosting(XGBoost)and neural networks(NN).Receiver operating characteristic(ROC)curve and decision curve analysis(DCA)were used to evaluate the predictive performance and clinical benefit of the models.Shapley additive explanation(SHAP)was used to explain and evaluate the effect of different clinical characteristics on the models.Results A total of 651 AHF patients were included,of whom 203 patients(31.2%)died or were readmitted during the vulnerable phase.ROC curve analysis showed that the AUC values of the LR,RF,DT,LGBM,XGBoost and NN model were 0.707,0.756,0.616,0.677,0.768 and 0.681,respectively.The XGBoost model had the highest AUC value.DCA showed that the XGBoost model exhibited greater clinical net benefit compared with other models,with the best predictive performance.SHAP algorithm analysis showed that the clinical features that had the greatest impact on the output of the model were serum uric acid,D-dimer,mean arterial pressure,B-type natriuretic peptide,left atrial diameter,body mass index,and New York Heart Association(NYHA)classification.Conclusion The XGBoost model has the best predictive performance in predicting the risk of death or readmission of AHF patients during the vulnerable phase.
9.Evidence-based evaluation of the global cancer-associated thromboembolism risk assessment tools
Xiaoli QIN ; Xiurong GAO ; Qin HE ; Shunlong OU ; Jing LUO ; Hua WEI ; Qian JIANG
China Pharmacy 2024;35(3):333-338
OBJECTIVE To evaluate the global cancer-associated thromboembolism risk assessment tools based on evidence- based methods, and to provide methodological reference and evidence-based basis for constructing a specific tool in China. METHODS A comprehensive search was conducted on 6 databases, including CNKI, Wanfang data, VIP, CBM, PubMed, and Embase, as well as on the websites of NCCN, ASCO, ESMO and so on with a deadline of June 30, 2022. Furthermore, a supplementary search was conducted in January 2023. The essential characteristics and methodological quality of included risk assessment tools were described and analyzed qualitatively, focusing on comparing each assessment stratification ability. RESULTS Totally 14 risk assessment tools were included in the study, with a sample size of 208-18 956 cases and an average age distribution of 53.1-74.0 years. The applicable population included outpatient cancer student@sina.com patients, lymphoma patients, and multiple myeloma patients,etc. The common predictive factors were body mass index, venous thromboembolism history, and tumor site. All tools had undergone methodological validation, with 9 presented in a weighted scoring format. Only seven tools were used simultaneously for specificity, sensitivity, negative predictive value (NPV), positive predictive value (PPV) and area under the curve (AUC) or C statistical analysis. CONCLUSIONS The risk of bias in constructing existing tools is high, and the heterogeneity of tool validation results is significant. The overall methodological quality must be improved, and its risk stratification ability must also be investigated. There are still certain limitations in clinical practice in China.
10.Near-infrared Spectroscopic Quality Control on Coating Process of Vitamin C Yinqiao Tablets
Qing TAO ; Li JIANG ; Youbing ZHONG ; Zhengji JIN ; Xiaoyong RAO ; Wei LIU ; Yan HE ; Yongkun GUO ; Xiaojian LUO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(14):184-190
ObjectiveTo construct a quantitative prediction model of three indicators(moisture absorption rate, film thickness and coating weight gain) during the coating process of Vitamin C Yinqiao tablets(VCYT) by near-infrared spectroscopy(NIRS), and to realize the endpoint judgment. MethodReal-time NIRS data of 4 batches of VCYT during the coating process were collected by diffuse reflection method. The coating method employed was the rolling coating method, and the samples were obtained at the spray stage from the coater's sampling port every 10 minutes, and 57 batches of samples(about 1 800 tablets) were collected at various coating times, the tablets were embedded in molten paraffin, cut longitudinally, and observed by stereomicroscope. The film thickness, with a target value of 38 μm, was then measured using Motic Images Advanced 3.2 software. Furthermore, the mositure absorption rate of samples, aiming for a target value of 3%, was determined in accordance with guiding principles for drug hygroscopicity testing in the 2020 edition of Chinese Pharmacopoeia, and 3 samples were randomly selected from each batch(10 tablets per batch), and the coating weight gain was calculated(target value of 4%). Partial least squares regression(PLSR) was used to construct a quantitative model of the 3 coating indicators, and the predicted values of the coating indicators were smoothed using the moving average method and used to determine the coating endpoints. ResultThe prediction determination coefficients(Rp2) for moisture absorption rate, film thickness and coating weight gain were 0.933 4, 0.932 6 and 0.965 9, the root mean square errors of prediction(RMSEP) were 0.163 5%, 1.870 9 μm and 0.240 3%, the relative percent deviations(RPD) were 3.711 0, 2.760 7 and 5.415 8, respectively. The results of the external validation set demonstrated that the real-time predicted values obtained by the models exhibited the same trend as the measured values, and the coating endpoint could be accurately predicted(with a prediction error of less than 7.32 min and a relative error of less than 5.63%). ConclusionThe established NIRS model exhibits excellent predictive performance and can be used for quality control of VCYT during the coating process.


Result Analysis
Print
Save
E-mail