1.Outcome Indicators in Randomized Controlled Trials of Traditional Chinese Medicine Intervention in Ulcerative Colitis
Yasheng DENG ; Lanfang MAO ; Jiang LIN ; Yanping FAN ; Wenyue LI ; Yonghui LIU ; Zhaobing NI ; Jinzhong YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):245-251
To systematically review randomized controlled trials (RCTs) of traditional Chinese medicine (TCM) intervention in ulcerative colitis (UC), and analyze the characteristics of these studies and their outcome indicators, thereby providing references for the design of future RCTs of TCM intervention in UC and offering evidence supporting the clinical application of TCM in UC. A computerized search was conducted in the China National Knowledge Infrastructure (CNKI), Wanfang Data, VIP, SinoMed, PubMed, Cochrane Library, EMbase, and Web of Science databases for RCTs of TCM intervention in UC published from January 2021 to August 2024. The risk of bias was assessed, and outcome indicators were qualitatively analyzed. A total of 555 RCTs were included, with a sample size of 44 853 participants. The largest sample size was 218 cases, and the smallest was 28 cases, with most studies focusing on 60-100 participants. Of the 386 RCTs that explicitly reported TCM syndrome types, the top three were large intestine dampness-heat syndrome (31.05%), spleen and kidney yang deficiency syndrome (12.47%), and spleen deficiency with dampness syndrome (9.17%). The interventions, ranked by frequency of use, included internal Chinese medicine compounds/preparations (64.5%), Chinese medicine compounds/preparations with retained enema (18.2%), internal Chinese medicine compounds/preparations + external TCM treatment (5.95%), and external TCM treatment alone (4.86%). The treatment duration was mainly 4-8 weeks (64.86%), with 61 studies (10.99%) reporting follow-up time. A total of 157 outcome indicators were used, with a frequency of 3 460 occurrences, classified into six domains: TCM syndromes and symptoms (346 occurrences, 10%), symptoms/signs (541 occurrences, 15.64%), physical and chemical examinations (2 119 occurrences, 61.24%), quality of life (107 occurrences, 3.09%), long-term prognosis (61 occurrences, 1.76%), and safety events (284 occurrences, 8.21%). The analysis reveals several limitations in the outcome indicators of TCM intervention in UC, including the lack of a basis for sample size calculation, non-standardized TCM syndrome classification, absence of trial design and registration, inadequate blinding and allocation concealment, adherence issues with interventions, imbalanced selection of surrogate and endpoint indicators, inconsistency in the timing of outcome measurements, design issues that require standardization, and ethical and safety concerns. It is recommended that future studies actively construct a set of core indicators for UC that include standardized TCM syndrome classification, clear efficacy evaluation indicators, key endpoint indicators, and reasonable measurement time points. Long-term prognostic impacts, comprehensive assessments of patients' quality of life, and consideration of economic benefits should be emphasized, providing a basis for the clinical practice of TCM in the treatment of UC.
2.Outcome Indicators in Randomized Controlled Trials of Traditional Chinese Medicine Intervention in Ulcerative Colitis
Yasheng DENG ; Lanfang MAO ; Jiang LIN ; Yanping FAN ; Wenyue LI ; Yonghui LIU ; Zhaobing NI ; Jinzhong YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):245-251
To systematically review randomized controlled trials (RCTs) of traditional Chinese medicine (TCM) intervention in ulcerative colitis (UC), and analyze the characteristics of these studies and their outcome indicators, thereby providing references for the design of future RCTs of TCM intervention in UC and offering evidence supporting the clinical application of TCM in UC. A computerized search was conducted in the China National Knowledge Infrastructure (CNKI), Wanfang Data, VIP, SinoMed, PubMed, Cochrane Library, EMbase, and Web of Science databases for RCTs of TCM intervention in UC published from January 2021 to August 2024. The risk of bias was assessed, and outcome indicators were qualitatively analyzed. A total of 555 RCTs were included, with a sample size of 44 853 participants. The largest sample size was 218 cases, and the smallest was 28 cases, with most studies focusing on 60-100 participants. Of the 386 RCTs that explicitly reported TCM syndrome types, the top three were large intestine dampness-heat syndrome (31.05%), spleen and kidney yang deficiency syndrome (12.47%), and spleen deficiency with dampness syndrome (9.17%). The interventions, ranked by frequency of use, included internal Chinese medicine compounds/preparations (64.5%), Chinese medicine compounds/preparations with retained enema (18.2%), internal Chinese medicine compounds/preparations + external TCM treatment (5.95%), and external TCM treatment alone (4.86%). The treatment duration was mainly 4-8 weeks (64.86%), with 61 studies (10.99%) reporting follow-up time. A total of 157 outcome indicators were used, with a frequency of 3 460 occurrences, classified into six domains: TCM syndromes and symptoms (346 occurrences, 10%), symptoms/signs (541 occurrences, 15.64%), physical and chemical examinations (2 119 occurrences, 61.24%), quality of life (107 occurrences, 3.09%), long-term prognosis (61 occurrences, 1.76%), and safety events (284 occurrences, 8.21%). The analysis reveals several limitations in the outcome indicators of TCM intervention in UC, including the lack of a basis for sample size calculation, non-standardized TCM syndrome classification, absence of trial design and registration, inadequate blinding and allocation concealment, adherence issues with interventions, imbalanced selection of surrogate and endpoint indicators, inconsistency in the timing of outcome measurements, design issues that require standardization, and ethical and safety concerns. It is recommended that future studies actively construct a set of core indicators for UC that include standardized TCM syndrome classification, clear efficacy evaluation indicators, key endpoint indicators, and reasonable measurement time points. Long-term prognostic impacts, comprehensive assessments of patients' quality of life, and consideration of economic benefits should be emphasized, providing a basis for the clinical practice of TCM in the treatment of UC.
3.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
4.Advances in pathogenesis of asthma airway remodeling and intervention mechanism of traditional Chinese medicine.
Ya-Sheng DENG ; Jiang LIN ; Yu-Jiang XI ; Yan-Ping FAN ; Wen-Yue LI ; Yong-Hui LIU ; Zhao-Bing NI ; Xi MING
China Journal of Chinese Materia Medica 2025;50(8):2050-2070
Asthma, a chronic inflammatory airway disease with a high global prevalence, has a complex pathogenesis, in which airway remodeling plays a key role in the chronicity of the disease. Airway remodeling involves a series of pathophysiological changes, including airway epithelial damage, proliferation of mucous glands and goblet cells, subepithelial fibrosis, proliferation and migration of airway smooth muscle cells, and epithelial-mesenchymal transition. These complex pathological changes significantly increase airway resistance and responsiveness, forming an important pathological basis for refractory asthma. Currently, the regulatory mechanisms of airway remodeling focus on signaling pathways and regulatory targets. The signaling pathways include phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt), nuclear factor-κB(NF-κB), transforming growth factor-β1(TGF-β1)/Smads, and mitogen-activated protein kinase(MAPK). The regulatory targets include microRNAs(miRNAs), competing endogenous RNAs(ceRNAs), long non-coding RNAs(lncRNAs), and circular RNAs(circRNAs). Key proteins involved in these processes include TGF-β1, silencing information regulator 2-related enzyme 1(SIRT1), chitinase 3-like protein 1(YKL-40), and adenosine deaminase-metalloproteinase 33(ADAM33). In recent years, the potential of traditional Chinese medicine in the treatment of asthma has become increasingly evident. Its active ingredients, extracts, and complexes can inhibit airway remodeling in asthma through multiple pathways, demonstrating a variety of effects, including anti-inflammatory actions, inhibition of smooth muscle cell proliferation and migration, regulation of epithelial-mesenchymal transition, attenuation of fibrosis and basement membrane thickening, reduction of mucus secretion, inhibition of vascular remodeling, modulation of immune imbalance, and antioxidative stress. This paper aims to provide an in-depth analysis of the pathogenesis and therapeutic targets of asthma, offering theoretical support and innovative strategies for clinical research and drug development in the treatment of asthma.
Asthma/pathology*
;
Humans
;
Airway Remodeling/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Animals
;
Signal Transduction/drug effects*
;
Medicine, Chinese Traditional
;
Transforming Growth Factor beta1/metabolism*
5.Scientific connotation of "blood stasis toxin" in hypoxic microenvironment: its "soil" function in tumor progression and micro-level treatment approaches.
Wei FAN ; Yuan-Lin LYU ; Xiao-Chen NI ; Kai-Yuan ZHANG ; Chu-Hang WANG ; Jia-Ning GUO ; Guang-Ji ZHANG ; Jian-Bo HUANG ; Tao JIANG
China Journal of Chinese Materia Medica 2025;50(12):3483-3488
The tumor microenvironment is a crucial factor in tumor occurrence and progression. The hypoxic microenvironment is widely present in tumor tissue and is a key endogenous factor accelerating tumor deterioration. The "blood stasis toxin" theory, as an emerging perspective in tumor research, is regarded as the unique "soil" in tumor progression from the perspective of traditional Chinese medicine(TCM) due to its dynamic evolution mechanism, which closely resembles the formation of the hypoxic microenvironment. Scientifically integrating TCM theories with the biological characteristics of tumors and exploring precise syndrome differentiation and treatment strategies are key to achieving comprehensive tumor prevention and control. This article focused on the hypoxic microenvironment of the tumor, elucidating its formation mechanisms and evolutionary processes and carefully analyzing the internal relationship between the "blood stasis toxin" theory and the hypoxic microenvironment. Additionally, it explored the interaction among blood stasis, toxic pathogens, and hypoxic environment and proposed micro-level prevention and treatment strategies targeting the hypoxic microenvironment based on the "blood stasis toxin" theory, aiming to provide TCM-based theoretical support and therapeutic approaches for precise regulation of the hypoxic microenvironment.
Humans
;
Tumor Microenvironment/drug effects*
;
Neoplasms/therapy*
;
Animals
;
Medicine, Chinese Traditional
;
Disease Progression
;
Drugs, Chinese Herbal
6.A computational medicine framework integrating multi-omics, systems biology, and artificial neural networks for Alzheimer's disease therapeutic discovery.
Yisheng YANG ; Yizhu DIAO ; Lulu JIANG ; Fanlu LI ; Liye CHEN ; Ming NI ; Zheng WANG ; Hai FANG
Acta Pharmaceutica Sinica B 2025;15(9):4411-4426
The translation of genetic findings from genome-wide association studies into actionable therapeutics persists as a critical challenge in Alzheimer's disease (AD) research. Here, we present PI4AD, a computational medicine framework that integrates multi-omics data, systems biology, and artificial neural networks for therapeutic discovery. This framework leverages multi-omic and network evidence to deliver three core functionalities: clinical target prioritisation; self-organising prioritisation map construction, distinguishing AD-specific targets from those linked to neuropsychiatric disorders; and pathway crosstalk-informed therapeutic discovery. PI4AD successfully recovers clinically validated targets like APP and ESR1, confirming its prioritisation efficacy. Its artificial neural network component identifies disease-specific molecular signatures, while pathway crosstalk analysis reveals critical nodal genes (e.g., HRAS and MAPK1), drug repurposing candidates, and clinically relevant network modules. By validating targets, elucidating disease-specific therapeutic potentials, and exploring crosstalk mechanisms, PI4AD bridges genetic insights with pathway-level biology, establishing a systems genetics foundation for rational therapeutic development. Importantly, its emphasis on Ras-centred pathways-implicated in synaptic dysfunction and neuroinflammation-provides a strategy to disrupt AD progression, complementing conventional amyloid/tau-focused paradigms, with the future potential to redefine treatment strategies in conjunction with mRNA therapeutics and thereby advance translational medicine in neurodegeneration.
7.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
8.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
9.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
10.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.

Result Analysis
Print
Save
E-mail