1.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
2.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
7.Study on mechanism of Yourenji Capsules in improving osteoporosis based on network pharmacology and proteomics.
Yun-Hang GAO ; Han LI ; Jian-Liang LI ; Ling SONG ; Teng-Fei CHEN ; Hong-Ping HOU ; Bo PENG ; Peng LI ; Guang-Ping ZHANG
China Journal of Chinese Materia Medica 2025;50(2):515-526
This study aimed to explore the pharmacological mechanism of Yourenji Capsules(YRJ) in improving osteoporosis by combining network pharmacology and proteomics technologies. The SD rats were randomly divided into a blank control group and a 700 mg·kg~(-1) YRJ group. The rats were subjected to gavage administration with the corresponding drugs, and the blank serum, drug-containing serum, and YRJ samples were compared using ultra performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS) to analyze the main components absorbed into blood. Network pharmacology analysis was conducted based on the YRJ components absorbed into blood to obtain related targets of the components and target genes involved in osteoporosis, and Venn diagrams were used to identify the intersection of drug action targets and disease targets. The STRING database was used for protein-protein interaction(PPI) network analysis of potential target proteins to construct a PPI network. Gene Ontology(GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment were performed using Enrichr to investigate the potential mechanism of action of YRJ. Ovariectomy(OVX) was performed to establish a rat model of osteoporosis, and the rats were divided into a sham group, a model group, and a 700 mg·kg~(-1) YRJ group. The rats were given the corresponding drugs by gavage. The femurs of the rats were subjected to label-free proteomics analysis to detect differentially expressed proteins, and GO functional enrichment and KEGG pathway enrichment analyses were performed on the differentially expressed proteins. With the help of network pharmacology and proteomics results, the mechanism by which YRJ improves osteoporosis was predicted. The analysis of the YRJ components absorbed into blood revealed 23 bioactive components of YRJ, and network pharmacology results indicated that key targets involved include tumor necrosis factor(TNF), tumor protein p53(TP53), protein kinase(AKT1), and matrix metalloproteinase 9(MMP9). These targets are mainly involved in osteoclast differentiation, estrogen signaling pathways, and nuclear factor-kappa B(NF-κB) signaling pathways. Additionally, the proteomics analysis highlighted important pathways such as peroxisome proliferator-activated receptor(PPAR) signaling pathways, mitogen-activated protein kinase(MAPK) signaling pathways, and β-alanine metabolism. The combined approaches of network pharmacology and proteomics have revealed that the mechanism by which YRJ improves osteoporosis may be closely related to the regulation of inflammation, osteoblast, and osteoclast metabolic pathways. The main pathways involved include the NF-κB signaling pathways, MAPK signaling pathways, and PPAR signaling pathways, among others.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Osteoporosis/metabolism*
;
Proteomics
;
Rats
;
Rats, Sprague-Dawley
;
Network Pharmacology
;
Female
;
Protein Interaction Maps/drug effects*
;
Capsules
;
Humans
;
Signal Transduction/drug effects*
8.Functional characterization of flavonoid glycosyltransferase AmGT90 in Astragalus membranaceus.
Guo-Qing PENG ; Bing-Yan XU ; Jian-Ping HUANG ; Zhi-Yin YU ; Sheng-Xiong HUANG
China Journal of Chinese Materia Medica 2025;50(6):1534-1543
Astragalus membranaceus(A. membranaceus), a traditional tonic, contains flavonoids as one of its main bioactive components and key indicators for quality standard detection. These compounds predominantly exist in glycosylated forms after glycosylation modification within the plant. The catalytic products of flavonoid glycosyltransferases in A. membranaceus have been reported to be mostly monoglycosides, and only AmUGT28 catalyzes luteolin to form diglycosides. In this study, we cloned a glycosyltransferase gene, AmGT90, from A. membranaceus, with an ORF length of 1 335 bp, encoding 444 amino acids, and the protein had a relative molecular mass of 50.5 kDa. Phylogenetic tree analysis indicated that AmGT90 belongs to the UGT74 family. In vitro enzymatic reaction showed that AmGT90 had broad substrate specificity and could catalyze the glycosylation of various flavonoids, including isoflavones, flavones, flavanones, and chalcones. AmGT90 not only catalyzed the formation of monoglycosides but also diglycosides. In addition, the mechanism of AmGT90 catalyzing the formation of diglycosides from luteolin was preliminarily explored. The experimental results showed that AmGT90 may preferentially recognize C4'-OH of luteolin and then recognize C7-OH to form diglycosides. This study reported a glycosyltransferase from A. membranaceus capable of converting flavonoids into monoglycosides and diglycosides. This finding not only enhances our understanding of the biosynthetic pathways of flavonoid glycosides in A. membranaceus but also introduces a new component for glycoside production through synthetic biology.
Glycosyltransferases/chemistry*
;
Flavonoids/chemistry*
;
Astragalus propinquus/classification*
;
Phylogeny
;
Glycosylation
;
Plant Proteins/chemistry*
;
Substrate Specificity
;
Cloning, Molecular
;
Amino Acid Sequence
9.Rapid characterization and identification of non-volatile components in Rhododendron tomentosum by UHPLC-Q-TOF-MS method.
Su-Ping XIAO ; Long-Mei LI ; Bin XIE ; Hong LIANG ; Qiong YIN ; Jian-Hui LI ; Jie DU ; Ji-Yong WANG ; Run-Huai ZHAO ; Yan-Qin XU ; Yun-Bo SUN ; Zong-Yuan LU ; Peng-Fei TU
China Journal of Chinese Materia Medica 2025;50(11):3054-3069
This study aimed to characterize and identify the non-volatile components in aqueous and ethanolic extracts of the stems and leaves of Rhododendron tomentosum by using sensitive and efficient ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS) combined with a self-built information database. By comparing with reference compounds, analyzing fragment ion information, searching relevant literature, and using a self-built information database, 118 compounds were identified from the aqueous and ethanolic extracts of R. tomentosum, including 35 flavonoid glycosides, 15 phenolic glycosides, 12 flavonoids, 7 phenolic acids, 7 phenylethanol glycosides, 6 tannins, 6 phospholipids, 5 coumarins, 5 monoterpene glycosides, 6 triterpenes, 3 fatty acids, and 11 other types of compounds. Among them, 102 compounds were reported in R. tomentosum for the first time, and 36 compounds were identified by comparing them with reference compounds. The chemical components in the ethanolic and aqueous extracts of R. tomentosum leaves and stems showed slight differences, with 84 common chemical components accounting for 71.2% of the total 118 compounds. This study systematically characterized and identified the non-volatile chemical components in the ethanolic and aqueous extracts of R. tomentosum for the first time. The findings provide a reference for active ingredient research, quality control, and product development of R. tomentosum.
Rhododendron/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Plant Leaves/chemistry*
10.Intramedullary administration of tranexamic acid reduces bleeding in proximal femoral nail antirotation surgery for intertrochanteric fractures in elderly individuals: A randomized controlled trial.
Xiang-Ping LUO ; Jian PENG ; Ling ZHOU ; Hao LIAO ; Xiao-Chun JIANG ; Xiong TANG ; Dun TANG ; Chao LIU ; Jian-Hui LIU
Chinese Journal of Traumatology 2025;28(3):201-207
PURPOSE:
Intertrochanteric fractures undergoing proximal femoral nail antirotation (PFNA) surgery are associated with significant hidden blood loss. This study aimed to explore whether intramedullary administration of tranexamic acid (TXA) can reduce bleeding in PFNA surgery for intertrochanteric fractures in elderly individuals.
METHODS:
A randomized controlled trial was conducted from January 2019 to December 2022. Patients aged over 60 years with intertrochanteric fractures who underwent intramedullary fixation surgery with PFNA were eligible for inclusion and grouped according to random numbers. A total of 249 patients were initially enrolled, of which 83 were randomly allocated to the TXA group and 82 were allocated to the saline group. The TXA group received intramedullary perfusion of TXA after the bone marrow was reamed. The primary outcomes were total peri-operative blood loss and post-operative transfusion rate. The occurrence of adverse events was also recorded. Continuous data was analyzed by unpaired t-test or Mann-Whitney U test, and categorical data was analyzed by Pearson Chi-square test.
RESULTS:
The total peri-operative blood loss (mL) in the TXA group was significantly lower than that in the saline group (577.23 ± 358.02 vs. 716.89 ± 420.30, p = 0.031). The post-operative transfusion rate was 30.67% in the TXA group and 47.95% in the saline group (p = 0.031). The extent of post-operative deep venous thrombosis and the 3-month mortality rate were similar between the 2 groups.
CONCLUSION
We observed that intramedullary administration of TXA in PFNA surgery for intertrochanteric fractures in elderly individuals resulted in less peri-operative blood loss and decreased transfusion rate, without any adverse effects, and is, thus, recommended.
Humans
;
Tranexamic Acid/administration & dosage*
;
Hip Fractures/surgery*
;
Male
;
Aged
;
Female
;
Fracture Fixation, Intramedullary/adverse effects*
;
Blood Loss, Surgical/prevention & control*
;
Antifibrinolytic Agents/administration & dosage*
;
Aged, 80 and over
;
Bone Nails
;
Middle Aged
;
Blood Transfusion/statistics & numerical data*

Result Analysis
Print
Save
E-mail