1.Chemical constituents from the leaves of Cyclocarya paliurus and their α-glucosidase inhibitory activities
Yong YANG ; Ting-Si GUO ; Min XIE ; Li-Hong TAN ; Wen-Chu LI ; Hao ZHENG ; Fei-Bing HUANG ; Yu-Pei YANG ; Wei WANG ; Yu-Qing JIAN
Chinese Traditional Patent Medicine 2024;46(3):834-842
AIM To study the chemical constituents from the leaves of Cyanocarya paliurus(Batalin)Iljinskaja and their α-glucosidase inhibitory activities.METHODS The 95%ethanol extract from the leaves of C.paliurus was isolated and purified by macroporous resin,silica gel,Sephadex LH-20,polyamide,C18 reversed-phase silica gel and semi-preparative HPLC,then the structures of obtained compounds were identified by physicochemical properties and spectral data.Their α-glucosidase inhibitory activities were evaluated by PNPG.RESULTS Fifteen compounds were isolated and identified as cyclopaloside C(1),cyclopaloside A(2),juglanosides E(3),vaccinin A(4),ent-murin A(5),kaempferol 3-O-α-L-rhamnopyranoside(6),kaempferol-3-O-β-D-glucopyranoside(7),kaempferol-3-O-β-D-glucuronide methyl ester(8),kaempferol-3-O-β-D-glucuronide ethyl ester(9),kaempferol-3-O-β-D-glucuronide butyl ester(10),quercetin-3-O-α-L-rhamnopyranoside(11)quercetin-3-O-β-D-glucopyranoside(12),quercetin-3-O-β-D-galactopyranoside(13),quercetin-3-O-β-D-glucuronide butyl ester(14),dihydrokaempferol(15).The IC50 value of total extracts ihibited α-glucosidase was(1.83±0.04)μg/mL,and the IC50 values of compounds 1,4-5 were(29.48±1.86),(0.50±0.07),(0.71±0.07)μmol/L,respectively.CONCLUSION Compound 1 is a new tetrahydronaphthalene glycoside.Compounds 4-5,8-10 and 14 are isolated from the leaves of C.paliurus for the first time.Compounds 4-5 are relatively rare flavonoid lignans with potential inhibitory activities against α-glucosidase.
2.Bioequivalence study of ezetimibe tablets in Chinese healthy subjects
Pei-Yue ZHAO ; Tian-Cai ZHANG ; Yu-Ning ZHANG ; Ya-Fei LI ; Shou-Ren ZHAO ; Jian-Chang HE ; Li-Chun DONG ; Min SUN ; Yan-Jun HU ; Jing LAN ; Wen-Zhong LIANG
The Chinese Journal of Clinical Pharmacology 2024;40(16):2378-2382
Objective To evaluate the bioequivalence and safety of ezetimibe tablets in healthy Chinese subjects.Methods The study was designed as a single-center,randomized,open-label,two-period,two-way crossover,single-dose trail.Subjects who met the enrollment criteria were randomized into fasting administration group and postprandial administration group and received a single oral dose of 10 mg of the subject presparation of ezetimibe tablets or the reference presparation per cycle.The blood concentrations of ezetimibe and ezetimibe-glucuronide conjugate were measured by high-performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS),and the bioequivalence of the 2 preparations was evaluated using the WinNonlin 7.0 software.Pharmacokinetic parameters were calculated to evaluate the bioequivalence of the 2 preparations.The occurrence of all adverse events was also recorded to evaluate the safety.Results The main pharmacokinetic parameters of total ezetimibe in the plasma of the test and the reference after a single fasted administration:Cmax were(118.79±35.30)and(180.79±51.78)nmol·mL-1;tmax were 1.40 and 1.04 h;t1/2 were(15.33±5.57)and(17.38±7.24)h;AUC0-t were(1 523.90±371.21)and(1 690.99±553.40)nmol·mL-1·h;AUC0-∞ were(1 608.70±441.28),(1 807.15±630.00)nmol·mL-1·h.The main pharmacokinetic parameters of total ezetimibe in plasma of test and reference after a single meal:Cmax were(269.18±82.94)and(273.93±87.78)nmol·mL-1;Tmax were 1.15 and 1.08 h;t1/2 were(22.53±16.33)and(16.02±5.84)h;AUC0_twere(1 463.37±366.03),(1 263.96±271.01)nmol·mL-1·h;AUC0-∞ were(1 639.01±466.53),(1 349.97±281.39)nmol·mL-1·h.The main pharmacokinetic parameters Cmax,AUC0-tand AUC0-∞ of the two preparations were analyzed by variance analysis after logarithmic transformation.In the fasting administration group,the 90%CI of the log-transformed geometric mean ratios were within the bioequivalent range for the remaining parameters in the fasting dosing group,except for the Cmax of ezetimibe and total ezetimibe,which were below the lower bioequivalent range.The Cmax of ezetimibe,ezetimibe-glucuronide,and total ezetimibe in the postprandial dosing group was within the equivalence range,and the 90%CI of the remaining parameters were not within the equivalence range for bioequivalence.Conclusion This test can not determine whether the test preparation and the reference preparation of ezetimibe tablets have bioequivalence,and further clinical trials are needed to verify it.
3.Epidemiological Surveillance:Genetic Diversity of Rotavirus Group A in the Pearl River Delta,Guangdong,China in 2019
Ying Jie JIANG ; Dan LIANG ; Li WANG ; Yun XIAO ; Feng Yu LIANG ; Xia Bi KE ; Juan SU ; Hong XIAO ; Tao WANG ; Min ZOU ; Jian Hong LI ; Wen Chang KE
Biomedical and Environmental Sciences 2024;37(3):278-293
Objective This study aimed to understand the epidemic status and phylogenetic relationships of rotavirus group A(RVA)in the Pearl River Delta region of Guangdong Province,China. Methods This study included individuals aged 28 days-85 years.A total of 706 stool samples from patients with acute gastroenteritis collected between January 2019 and January 2020 were analyzed for 17 causative pathogens,including RVA,using a Gastrointestinal Pathogen Panel,followed by genotyping,virus isolation,and complete sequencing to assess the genetic diversity of RVA. Results The overall RVA infection rate was 14.59%(103/706),with an irregular epidemiological pattern.The proportion of co-infection with RVA and other pathogens was 39.81%(41/103).Acute gastroenteritis is highly prevalent in young children aged 0-1 year,and RVA is the key pathogen circulating in patients 6-10 months of age with diarrhea.G9P[8](58.25%,60/103)was found to be the predominant genotype in the RVA strains,and the 41 RVA-positive strains that were successfully sequenced belonged to three different RVA genotypes in the phylogenetic analysis.Recombination analysis showed that gene reassortment events,selection pressure,codon usage bias,gene polymorphism,and post-translational modifications(PTMs)occurred in the G9P[8]and G3P[8]strains. Conclusion This study provides molecular evidence of RVA prevalence in the Pearl River Delta region of China,further enriching the existing information on its genetics and evolutionary characteristics and suggesting the emergence of genetic diversity.Strengthening the surveillance of genotypic changes and gene reassortment in RVA strains is essential for further research and a better understanding of strain variations for further vaccine development.
4.Introduction of WEN Jian-Min's Minimally-Invasive Diagnosis and Treatment System for Hallux Valgus and Its Application
Guan-Nan WEN ; Ting CHENG ; Ke-Wei JIANG ; Yi-Biao DOU ; Xiang-Yu XI ; Zhi-Qiang BAI ; Jian-Min WEN
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(10):2568-2575
Hallux valgus is a common disorder of the forefeet,and its diagnosis and treatment have always drawn the attention of the practitioners.This article introduced the minimally-invasive diagnosis and treatment system for hallux valgus of integrated traditional Chinese and western medicine,which was established by Professor WEN Jian-Min after more than 40 years of in-depth clinical practice and research based on the theory of yin-yang balance and theory of tendons and bones in traditional Chinese medicine(TCM)and through the combination of modern surgical experience.The minimally-invasive diagnosis and treatment system for hallux valgus embodies the principles of balancing yin and yang,laying equal stress on tendons and bones,unifying the fixation and functional exercises,and treating the fractures and the whole body simultaneously,and includes the key technologies such as minimally-invasive osteotomy for the first metatarsal bone,curtain-wrapped external fixation,perioperative Chinese medicine therapy based on syndrome differentiation,and rehabilitation and nursing of TCM.The system will provide a systematic guide for the standardized minimally-invasive treatment of hallux valgus,and will supply an important approach to the treatment of other orthopedic diseases with integrated traditional Chinese and western medicine.The minimally-invasive diagnosis and treatment system for hallux valgus reflects the scientific research achievements and clinical experience of Professor WEN Jian-Min,which exerts high significance of reference and application value.
5.A multi-center epidemiological study on pneumococcal meningitis in children from 2019 to 2020
Cai-Yun WANG ; Hong-Mei XU ; Gang LIU ; Jing LIU ; Hui YU ; Bi-Quan CHEN ; Guo ZHENG ; Min SHU ; Li-Jun DU ; Zhi-Wei XU ; Li-Su HUANG ; Hai-Bo LI ; Dong WANG ; Song-Ting BAI ; Qing-Wen SHAN ; Chun-Hui ZHU ; Jian-Mei TIAN ; Jian-Hua HAO ; Ai-Wei LIN ; Dao-Jiong LIN ; Jin-Zhun WU ; Xin-Hua ZHANG ; Qing CAO ; Zhong-Bin TAO ; Yuan CHEN ; Guo-Long ZHU ; Ping XUE ; Zheng-Zhen TANG ; Xue-Wen SU ; Zheng-Hai QU ; Shi-Yong ZHAO ; Lin PANG ; Hui-Ling DENG ; Sai-Nan SHU ; Ying-Hu CHEN
Chinese Journal of Contemporary Pediatrics 2024;26(2):131-138
Objective To investigate the clinical characteristics and prognosis of pneumococcal meningitis(PM),and drug sensitivity of Streptococcus pneumoniae(SP)isolates in Chinese children.Methods A retrospective analysis was conducted on clinical information,laboratory data,and microbiological data of 160 hospitalized children under 15 years old with PM from January 2019 to December 2020 in 33 tertiary hospitals across the country.Results Among the 160 children with PM,there were 103 males and 57 females.The age ranged from 15 days to 15 years,with 109 cases(68.1% )aged 3 months to under 3 years.SP strains were isolated from 95 cases(59.4% )in cerebrospinal fluid cultures and from 57 cases(35.6% )in blood cultures.The positive rates of SP detection by cerebrospinal fluid metagenomic next-generation sequencing and cerebrospinal fluid SP antigen testing were 40% (35/87)and 27% (21/78),respectively.Fifty-five cases(34.4% )had one or more risk factors for purulent meningitis,113 cases(70.6% )had one or more extra-cranial infectious foci,and 18 cases(11.3% )had underlying diseases.The most common clinical symptoms were fever(147 cases,91.9% ),followed by lethargy(98 cases,61.3% )and vomiting(61 cases,38.1% ).Sixty-nine cases(43.1% )experienced intracranial complications during hospitalization,with subdural effusion and/or empyema being the most common complication[43 cases(26.9% )],followed by hydrocephalus in 24 cases(15.0% ),brain abscess in 23 cases(14.4% ),and cerebral hemorrhage in 8 cases(5.0% ).Subdural effusion and/or empyema and hydrocephalus mainly occurred in children under 1 year old,with rates of 91% (39/43)and 83% (20/24),respectively.SP strains exhibited complete sensitivity to vancomycin(100% ,75/75),linezolid(100% ,56/56),and meropenem(100% ,6/6).High sensitivity rates were also observed for levofloxacin(81% ,22/27),moxifloxacin(82% ,14/17),rifampicin(96% ,25/26),and chloramphenicol(91% ,21/23).However,low sensitivity rates were found for penicillin(16% ,11/68)and clindamycin(6% ,1/17),and SP strains were completely resistant to erythromycin(100% ,31/31).The rates of discharge with cure and improvement were 22.5% (36/160)and 66.2% (106/160),respectively,while 18 cases(11.3% )had adverse outcomes.Conclusions Pediatric PM is more common in children aged 3 months to under 3 years.Intracranial complications are more frequently observed in children under 1 year old.Fever is the most common clinical manifestation of PM,and subdural effusion/emphysema and hydrocephalus are the most frequent complications.Non-culture detection methods for cerebrospinal fluid can improve pathogen detection rates.Adverse outcomes can be noted in more than 10% of PM cases.SP strains are high sensitivity to vancomycin,linezolid,meropenem,levofloxacin,moxifloxacin,rifampicin,and chloramphenicol.[Chinese Journal of Contemporary Pediatrics,2024,26(2):131-138]
6.Pathogenicity and risk factors for intestinal colonization of carbapenem-resistant Enterobacterales in patients from intensive care unit
Jian-Shui YANG ; Qi-Fen MIN ; Xiao-Wen GONG ; Zhi-Ping QI ; Ye-Jun CAO
Chinese Journal of Infection Control 2024;23(11):1373-1378
Objective To analyze risk factors and pathogenic characteristics of intestinal colonization of carbape-nem-resistant Enterobacterales(CRE)in patients from intensive care unit(ICU).Methods A total of 392 ICU pa-tients who underwent intestinal CRE screening in a tertiary hospital in Changzhou from March to December,2023 were divided into the colonization group(n=42)and the non-colonization group(n=350)according to the screening results.Clinical data of patients,including age,gender,underlying diseases,malignant tumors,radiotherapy,chemotherapy,infection before the last screening,antimicrobial use,and invasive procedures were collected for the analysis on risk factors and pathogenicity.Results Among 42 patients with positive CRE screening results,44 CRE strains were detected,mainly Klebsiella pneumoniae(65.91%),followed by Escherichia coli(15.91%)and En-terobacter cloacae(13.64%).The average time from admission in ICU to positive screening results of intestinal CRE in the colonization group was 14 days.Long term use of carbapenem antibiotics(OR=1.47,95%CI:1.31-1.65),mechanical ventilation(OR=1.14,95%CI:1.06-1.22),and Enterobacterales infection(OR=10.10,95%CI:3.28-32.09)were independent risk factors for intestinal CRE colonization.Patients who received carbap-enem antibiotics for ≥15 days(x2=167.52,P<0.001)and those who received mechanical ventilation for ≥15 days(x2=101.03,P<0.001)had higher risks for intestinal CRE colonization.Conclusion In clinical practice,it is necessary to improve pathogen detection,treat Enterobacterales infection timely,choose carbapenem antibiotics carefully,shorten treatment course,actively evaluate indications for mechanical ventilation,and wean off ventilator timely.
7.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
8.Mechanism of HOXC6 promoting the progression of prostate cancer by activating the SFRP1/Wnt/β-catenin signaling pathway
Yong-Jun ZHENG ; Wen-Min LI ; Li-Chuan ZHENG ; Yan-Feng ZHOU ; Jian WANG ; Wei-Mu XIA ; Wei-Jing YE ; Jia-Shun YU
National Journal of Andrology 2024;30(7):579-587
Objective:To study the expression of the Homeobox C6(HOXC6)gene in the homeobox family in PCa,its effect on the biological behavior of PCa cells and its action mechanism.Methods:Based on the studies of HOXC6 retrieved from the data-base of Gene Expression Profiling Interactive Analysis(GEPIA),we analyzed the expression of HOXC6 in PCa and the relationship of its expression level with the survival prognosis of the patients.We detected the expression of the HOXC6 protein in PCa tissues and cells by Western blot,stably interfered with the expression of the HOXC6 gene in human PCa DU145 and PC-3 cells and normal prosta-tic epithelial RWPE-1 cells using the siRNA plasmid,and determined the effects of HOXC6 on the proliferation,migration and inva-siveness of PCa cells by CCK8,plate cloning and scratch healing and Transwell invasion assays.Using the GEPIA database,we ana-lyzed the correlation of the Wnt tumor inhibitory factor-secreted frizzled-related protein 1(SFRP1)gene with HOXC6,and detected the expressions of HOXC6,SFRP1,Wnt and β-catenin in PC-3 cells after siRNA-HOXC6 transfection by Western blot.Results:The expression of HOXC6 was dramatically higher in the PCa than in the normal prostate tissue(P<0.01),and in the PCa cells than in the normal prostatic epithelial cells(P<0.01).Bioinformatics analysis indicated a lower survival rate of the PCa patients with a high than those with a low HOXC6 expression(P=0.011).The relative expression of the HOXC6 protein,absorbance value,number of clones formed and number of invaded cells were significantly lower in the siRNA group than in the negative controls(P<0.05).Ac-cording to the GEPIA database,highly expressed SFRP1 was associated with a good prognosis of PCa,and the protein expressions of Wnt and β-catenin were markedly increased while that of SFRP1 decreased in the PCa PC-3 cell line(P<0.05).The expressions of the Wnt and β-catenin proteins were decreased and that of SFRP1 increased significantly in the siRNA-HOXC6 transfection group com-pared with those in the siRNA negative control and PCa PC-3 groups(P<0.05).Conclusion:HOXC6 is highly expressed in PCa tissues and related to the proliferation,migration and invasiveness of PCa cells.HOXC6 promotes the growth of DU145 and PC-3 cells in PCa by inhibiting the SFRP1/Wnt/β-catenin signaling pathway,and may be a potential target for clinical treatment of PCa.
9.Study on untargeted metabolomics of Codonopsis pilosula from different producing areas based on ultra-performance liquid chromatography tandem high resolution mass spectrometry
Yuan-jing NIU ; Jia-qi WEN ; Hui-xin JI ; Jian-kuan LI ; Min GAO ; Yun-e BAI ; Jian-ping GAO
Acta Pharmaceutica Sinica 2023;58(7):1842-1850
Lu Dangshen, a traditional authentic medicinal material of Codonopsis Radix is mainly produced in Shangdang (Changzhi) area of Shanxi Province. Baitiao Dangshen is mainly produced in Gansu Province. Codonopsis Radix contains many kinds of components such as phenylpropanoids, polyalkynes, alkaloids, terpenes, fatty acids, flavonoids, and so on. At present, the effect of producing areas on its chemical compositions has not been systematically studied. This study analyzed the differences of metabolites among
10.Quality evaluation of Qilong Zhuang'er oral liquid based on UHPLC-Q-exactive orbitrap MS and chemometrics analysis
Xiao-min CUI ; Ming-zhi DONG ; Hong ZHANG ; Jian-gang LI ; Hui REN ; Jing HU ; Wen-jing LU ; Juan CHEN ; Xue MENG ; Zhi-yong CHEN
Acta Pharmaceutica Sinica 2023;58(6):1655-1662
An UHPLC-Q-exactive orbitrap MS method for the simultaneous determination of 19 chemical components in Qilong Zhuang'er oral liquid was established and the quality differences between different batches of samples was compared by chemometric analysis to provide a basis for the quality evaluation of the preparation. The contents of allantoin,

Result Analysis
Print
Save
E-mail