1.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Distribution characteristics of bacterial communities in central air-conditioning ventilation systems of a Grade 3A hospital in Shanghai based on 16S rRNA sequencing
Jun NI ; Haiyun ZHANG ; Jian CHEN ; Lijun ZHANG ; Yongping LIU ; Xiaojing LI ; Yiming ZHENG ; Liping ZHANG
Journal of Environmental and Occupational Medicine 2025;42(6):732-739
Background A diverse cohort of patients and susceptible individuals congregate in healthcare facilities, where exposure to pathogenic microorganisms associated with respiratory infectious diseases constitutes a significant risk factor for cross-infection. Central air-conditioning ventilation systems improve some indoor environment indicators while exacerbating the risk of transmission of respiratory infectious diseases. Objective To investigate the distribution characteristics of microbial communities in the central air-conditioning ventilation systems of hospitals, providing a scientific basis for the selection of microbial indicators in hygiene standards for hospital central air-conditioning ventilation systems and for hospital risk early warning systems. Methods In October 2023, two central air-conditioning ventilation systems were selected from a Grade 3A hospital in Shanghai: one was an all-air air-conditioning system serving the waiting area on the ground floor, and the other was a fan coil plus fresh air system serving the outpatient area on the third floor. Samples from four different components of the ventilation systems—air outlets, filters, surface coolers, and condensate trays—were collected for high-throughput sequencing of the 16S rRNA gene to analyze bacterial communities. Alpha-diversity and beta-diversity analyses were performed to investigate the microbial community composition and diversity characteristics of the hospital central air-conditioning ventilation systems. Functional analysis was conducted to determine the relative abundance of bacterial functions in these systems.Results A total of 528 operational taxonomic units (OTUs) were identified, encompassing 20 bacterial phyla, 37 classes, 79 orders, 123 families, and 240 genera. The analysis revealed that the bacterial community was predominantly composed of Proteobacteria, Gemmatimonadates, Bacteroidetes, and Actinobacteria. The diversity analysis indicated that bacterial community richness and diversity were highest in the condensate trays, while no statistically significant differences (P > 0.05) were observed in the bacterial community composition among the air outlets, filters, and surface coolers. The functional analysis showed that the bacterial communities in the central air-conditioning ventilation systems primarily exhibited chemoheterotrophic, oxidative energy-dependent heterotrophic, and ureolytic functional characteristics. Conclusion The dominance of Proteobacteria suggests that this phylum exhibits strong adaptability in the central air-conditioning ventilation systems, possibly related to its ability to survive and reproduce under varying environmental conditions. The diversity analysis indicates that the condensate tray is a critical area for bacterial proliferation in the central air-conditioning ventilation systems. The similarity in environmental conditions among the air outlets, filters, and surface coolers result in similar bacterial community structures. The functional analysis reveals that the bacterial communities possess robust energy conversion and metabolic capabilities, potentially contributing to processes such as organic matter decomposition and nitrogen cycling within the central air-conditioning ventilation systems.
5.Effect of Maxing Loushi Decoction on Inflammatory Factors, Immune Function, and PD-1/PD-L1 Signaling Pathway in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease with Phlegm Turbidity Obstructing Lung Syndrome
Yuexin SHI ; Zhi YAO ; Jun YAN ; Caijun WU ; Li LI ; Yuanzhen JIAN ; Guangming ZHENG ; Yanchen CAO ; Haifeng GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):143-150
ObjectiveTo evaluate the clinical efficacy of Maxing Loushi decoction in the treatment of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) with phlegm turbidity obstructing lung syndrome, and to investigate its effects on inflammatory factors, immune function, and the programmed death-1(PD-1)/programmed death-ligand 1 (PD-L1) signaling pathway. MethodsA randomized controlled study was conducted, enrolling 90 hospitalized patients with AECOPD and phlegm turbidity obstructing lung syndrome in the Respiratory and Emergency Departments of Dongzhimen Hospital, Beijing University of Chinese Medicine, from April 2024 to December 2024. Patients were randomly assigned to a control group and an observation group using a random number table, with 45 patients in each group. The control group received conventional Western medical treatment, while the observation group received additional Maxing Loushi decoction for 14 days. Clinical efficacy, COPD Assessment Test (CAT) score, modified Medical Research Council Dyspnea Scale (mMRC), 6-minute walk test (6MWT), serum inflammatory factors, T lymphocyte subsets, and serum PD-1/PD-L1 levels were compared between the two groups before and after treatment. ResultsThe total clinical effective rate was 78.57% (33/42) in the control group and 95.35% (41/43) in the observation group, with the observation group showing significantly higher efficacy than that of the control group. The difference was statistically significant (χ2 = 5.136, P<0.05). After treatment, both groups showed significant reductions in CAT and mMRC scores (P<0.05, P<0.01) and significant increases in 6MWT compared to baseline (P<0.01). The observation group demonstrated significantly greater improvements than the control group in this regard. Levels of inflammatory markers including C-reactive protein (CRP), procalcitonin (PCT), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1(MCP-1), and macrophage inflammatory protein-1α (MIP-1α) were significantly reduced in both groups (P<0.05, P<0.01), with greater reductions in the observation group (P<0.05, P<0.01). CD8+ levels were significantly reduced (P<0.01), while CD3+, CD4+, and CD4+/CD8+ levels were significantly increased in both groups after treatment (P<0.05, P<0.01), with more significant improvements observed in the observation group (P<0.05, P<0.01). Serum PD-1 levels were reduced (P<0.05, P<0.01), and PD-L1 levels were increased significantly in both groups after treatment (P<0.05, P<0.01), with more pronounced changes in the observation group (P<0.05). ConclusionMaxing Loushi decoction demonstrates definite therapeutic efficacy as an adjunctive treatment for patients with AECOPD and phlegm turbidity obstructing lung syndrome. It contributes to reducing serum inflammatory factors, improving immune function, and regulating the PD-1/PD-L1 signaling pathway.
6.Effect of Maxing Loushi Decoction on Inflammatory Factors, Immune Function, and PD-1/PD-L1 Signaling Pathway in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease with Phlegm Turbidity Obstructing Lung Syndrome
Yuexin SHI ; Zhi YAO ; Jun YAN ; Caijun WU ; Li LI ; Yuanzhen JIAN ; Guangming ZHENG ; Yanchen CAO ; Haifeng GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):143-150
ObjectiveTo evaluate the clinical efficacy of Maxing Loushi decoction in the treatment of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) with phlegm turbidity obstructing lung syndrome, and to investigate its effects on inflammatory factors, immune function, and the programmed death-1(PD-1)/programmed death-ligand 1 (PD-L1) signaling pathway. MethodsA randomized controlled study was conducted, enrolling 90 hospitalized patients with AECOPD and phlegm turbidity obstructing lung syndrome in the Respiratory and Emergency Departments of Dongzhimen Hospital, Beijing University of Chinese Medicine, from April 2024 to December 2024. Patients were randomly assigned to a control group and an observation group using a random number table, with 45 patients in each group. The control group received conventional Western medical treatment, while the observation group received additional Maxing Loushi decoction for 14 days. Clinical efficacy, COPD Assessment Test (CAT) score, modified Medical Research Council Dyspnea Scale (mMRC), 6-minute walk test (6MWT), serum inflammatory factors, T lymphocyte subsets, and serum PD-1/PD-L1 levels were compared between the two groups before and after treatment. ResultsThe total clinical effective rate was 78.57% (33/42) in the control group and 95.35% (41/43) in the observation group, with the observation group showing significantly higher efficacy than that of the control group. The difference was statistically significant (χ2 = 5.136, P<0.05). After treatment, both groups showed significant reductions in CAT and mMRC scores (P<0.05, P<0.01) and significant increases in 6MWT compared to baseline (P<0.01). The observation group demonstrated significantly greater improvements than the control group in this regard. Levels of inflammatory markers including C-reactive protein (CRP), procalcitonin (PCT), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1(MCP-1), and macrophage inflammatory protein-1α (MIP-1α) were significantly reduced in both groups (P<0.05, P<0.01), with greater reductions in the observation group (P<0.05, P<0.01). CD8+ levels were significantly reduced (P<0.01), while CD3+, CD4+, and CD4+/CD8+ levels were significantly increased in both groups after treatment (P<0.05, P<0.01), with more significant improvements observed in the observation group (P<0.05, P<0.01). Serum PD-1 levels were reduced (P<0.05, P<0.01), and PD-L1 levels were increased significantly in both groups after treatment (P<0.05, P<0.01), with more pronounced changes in the observation group (P<0.05). ConclusionMaxing Loushi decoction demonstrates definite therapeutic efficacy as an adjunctive treatment for patients with AECOPD and phlegm turbidity obstructing lung syndrome. It contributes to reducing serum inflammatory factors, improving immune function, and regulating the PD-1/PD-L1 signaling pathway.
7.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
8.Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults (version 2024)
Qingde WANG ; Yuan HE ; Bohua CHEN ; Tongwei CHU ; Jinpeng DU ; Jian DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Hua GUO ; Yong HAI ; Lijun HE ; Dianming JIANG ; Jianyuan JIANG ; Bin LIN ; Bin LIU ; Baoge LIU ; Chunde LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Hongjian LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Tiansheng SUN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Hong XIA ; Guoyong YIN ; Jinglong YAN ; Wen YUAN ; Zhaoming YE ; Jie ZHAO ; Jianguo ZHANG ; Yue ZHU ; Yingjie ZHOU ; Zhongmin ZHANG ; Wei MEI ; Dingjun HAO ; Baorong HE
Chinese Journal of Trauma 2024;40(2):97-106
Ankylosing spondylitis (AS) combined with lower cervical fracture is often categorized into unstable fracture, with a high incidence of neurological injury and a high rate of disability and morbidity. As factors such as shoulder occlusion may affect the accuracy of X-ray imaging diagnosis, it is often easily misdiagnosed at the primary diagnosis. Non-operative treatment has complications such as bone nonunion and the possibility of secondary neurological damage, while the timing, access and choice of surgical treatment are still controversial. Currently, there are no clinical practice guidelines for the treatment of AS combined with lower cervical fracture with or without dislocation. To this end, the Spinal Trauma Group of Orthopedics Branch of Chinese Medical Doctor Association organized experts to formulate Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults ( version 2024) in accordance with the principles of evidence-based medicine, scientificity and practicality, in which 11 recommendations were put forward in terms of the diagnosis, imaging evaluation, typing and treatment, etc, to provide guidance for the diagnosis and treatment of AS combined with lower cervical fracture.
9.Expert Consensus of Multidisciplinary Diagnosis and Treatment for Paroxysmal Nocturnal Hemoglobinuria(2024)
Miao CHEN ; Chen YANG ; Ziwei LIU ; Wei CAO ; Bo ZHANG ; Xin LIU ; Jingnan LI ; Wei LIU ; Jie PAN ; Jian WANG ; Yuehong ZHENG ; Yuexin CHEN ; Fangda LI ; Shunda DU ; Cong NING ; Limeng CHEN ; Cai YUE ; Jun NI ; Min PENG ; Xiaoxiao GUO ; Tao WANG ; Hongjun LI ; Rongrong LI ; Tong WU ; Bing HAN ; Shuyang ZHANG ; MULTIDISCIPLINE COLLABORATION GROUP ON RARE DISEASE AT PEKING UNION MEDICAL COLLEGE HOSPITAL
Medical Journal of Peking Union Medical College Hospital 2024;15(5):1011-1028
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal hematopoietic stem cell disease caused by abnormal expression of glycosylphosphatidylinositol (GPI) on the cell membrane due to mutations in the phosphatidylinositol glycan class A(PIGA) gene. It is commonly characterized by intravascular hemolysis, repeated thrombosis, and bone marrow failure, as well as multiple systemic involvement symptoms such as renal dysfunction, pulmonary hypertension, swallowing difficulties, chest pain, abdominal pain, and erectile dysfunction. Due to the rarity of PNH and its strong heterogeneity in clinical manifestations, multidisciplinary collaboration is often required for diagnosis and treatment. Peking Union Medical College Hospital, relying on the rare disease diagnosis and treatment platform, has invited multidisciplinary clinical experts to form a unified opinion on the diagnosis and treatment of PNH, and formulated the
10.Incidence of postoperative complications in Chinese patients with gastric or colorectal cancer based on a national, multicenter, prospective, cohort study
Shuqin ZHANG ; Zhouqiao WU ; Bowen HUO ; Huining XU ; Kang ZHAO ; Changqing JING ; Fenglin LIU ; Jiang YU ; Zhengrong LI ; Jian ZHANG ; Lu ZANG ; Hankun HAO ; Chaohui ZHENG ; Yong LI ; Lin FAN ; Hua HUANG ; Pin LIANG ; Bin WU ; Jiaming ZHU ; Zhaojian NIU ; Linghua ZHU ; Wu SONG ; Jun YOU ; Su YAN ; Ziyu LI
Chinese Journal of Gastrointestinal Surgery 2024;27(3):247-260
Objective:To investigate the incidence of postoperative complications in Chinese patients with gastric or colorectal cancer, and to evaluate the risk factors for postoperative complications.Methods:This was a national, multicenter, prospective, registry-based, cohort study of data obtained from the database of the Prevalence of Abdominal Complications After Gastro- enterological Surgery (PACAGE) study sponsored by the China Gastrointestinal Cancer Surgical Union. The PACAGE database prospectively collected general demographic characteristics, protocols for perioperative treatment, and variables associated with postoperative complications in patients treated for gastric or colorectal cancer in 20 medical centers from December 2018 to December 2020. The patients were grouped according to the presence or absence of postoperative complications. Postoperative complications were categorized and graded in accordance with the expert consensus on postoperative complications in gastrointestinal oncology surgery and Clavien-Dindo grading criteria. The incidence of postoperative complications of different grades are presented as bar charts. Independent risk factors for occurrence of postoperative complications were identified by multifactorial unconditional logistic regression.Results:The study cohort comprised 3926 patients with gastric or colorectal cancer, 657 (16.7%) of whom had a total of 876 postoperative complications. Serious complications (Grade III and above) occurred in 4.0% of patients (156/3926). The rate of Grade V complications was 0.2% (7/3926). The cohort included 2271 patients with gastric cancer with a postoperative complication rate of 18.1% (412/2271) and serious complication rate of 4.7% (106/2271); and 1655 with colorectal cancer, with a postoperative complication rate of 14.8% (245/1655) and serious complication rate of 3.0% (50/1655). The incidences of anastomotic leakage in patients with gastric and colorectal cancer were 3.3% (74/2271) and 3.4% (56/1655), respectively. Abdominal infection was the most frequently occurring complication, accounting for 28.7% (164/572) and 39.5% (120/304) of postoperative complications in patients with gastric and colorectal cancer, respectively. The most frequently occurring grade of postoperative complication was Grade II, accounting for 65.4% (374/572) and 56.6% (172/304) of complications in patients with gastric and colorectal cancers, respectively. Multifactorial analysis identified (1) the following independent risk factors for postoperative complications in patients in the gastric cancer group: preoperative comorbidities (OR=2.54, 95%CI: 1.51-4.28, P<0.001), neoadjuvant therapy (OR=1.42, 95%CI:1.06-1.89, P=0.020), high American Society of Anesthesiologists (ASA) scores (ASA score 2 points:OR=1.60, 95% CI: 1.23-2.07, P<0.001, ASA score ≥3 points:OR=0.43, 95% CI: 0.25-0.73, P=0.002), operative time >180 minutes (OR=1.81, 95% CI: 1.42-2.31, P<0.001), intraoperative bleeding >50 mL (OR=1.29,95%CI: 1.01-1.63, P=0.038), and distal gastrectomy compared with total gastrectomy (OR=0.65,95%CI: 0.51-0.83, P<0.001); and (2) the following independent risk factors for postoperative complications in patients in the colorectal cancer group: female (OR=0.60, 95%CI: 0.44-0.80, P<0.001), preoperative comorbidities (OR=2.73, 95%CI: 1.25-5.99, P=0.030), neoadjuvant therapy (OR=1.83, 95%CI:1.23-2.72, P=0.008), laparoscopic surgery (OR=0.47, 95%CI: 0.30-0.72, P=0.022), and abdominoperineal resection compared with low anterior resection (OR=2.74, 95%CI: 1.71-4.41, P<0.001). Conclusion:Postoperative complications associated with various types of infection were the most frequent complications in patients with gastric or colorectal cancer. Although the risk factors for postoperative complications differed between patients with gastric cancer and those with colorectal cancer, the presence of preoperative comorbidities, administration of neoadjuvant therapy, and extent of surgical resection, were the commonest factors associated with postoperative complications in patients of both categories.

Result Analysis
Print
Save
E-mail