1.Aldehyde Dehydrogenase 2 Gene Mutation May Reduce the Risk of Rupture of Intracranial Aneurysm in Chinese Han Population
Xiheng CHEN ; Siming GUI ; Dachao WEI ; Dingwei DENG ; Yudi TANG ; Jian LV ; Wei YOU ; Jia JIANG ; Jun LIN ; Huijian GE ; Peng LIU ; Yuhua JIANG ; Lixin MA ; Yunci WANG ; Ming LV ; Youxiang LI
Journal of Stroke 2025;27(2):237-249
Background:
and Purpose Ruptured intracranial aneurysms (RIA) are associated with a mortality rate of up to 40% in the Chinese population, highlighting the critical need for targeted treatment interventions for at-risk individuals. Although the impact of aldehyde dehydrogenase 2 (ALDH2) gene mutations on susceptibility to intracranial aneurysms (IA) is well documented, the potential connection between ALDH2 rs671 single-nucleotide polymorphism (SNP) and RIA remains unexplored. Given the increased prevalence of ALDH2 gene mutations among Chinese Han individuals, it is clinically relevant to investigate the link between ALDH2 rs671 SNP and IA rupture.
Methods:
A prospective study was conducted on 546 patients diagnosed with IA to investigate the association between ALDH2 rs671 SNP and the risk of IA rupture.
Results:
The ALDH2 rs671 SNP (ALDH2*2) was significantly more prevalent in patients with unruptured IA (UIA) than in those with RIA (32.56% vs. 18.58%, P=0.004). Multivariate logistic regression analysis revealed that people with the ALDH2 mutation (ALDH2*1/*2 and ALDH2*2/*2 gene type) had a significantly reduced odds ratio (OR=0.49; 95% confidence level [CI] 0.27–0.88; P=0.018) for RIAs. Age-specific subgroup analysis indicated that the ALDH2 mutation provided a stronger protective effect in individuals aged 60 years and above with IA compared to those under 60 years old (OR=0.38 vs. OR=0.52, both P<0.05).
Conclusion
The incidence of RIA was significantly higher in individuals with a normal ALDH2 gene (ALDH2*1/*1) than in those with an ALDH2 rs671 SNP (ALDH2*1/*2 or ALDH2*2/*2). ALDH2 rs671 SNP may serve as a protective factor against RIA in the Chinese Han population.
2.Aldehyde Dehydrogenase 2 Gene Mutation May Reduce the Risk of Rupture of Intracranial Aneurysm in Chinese Han Population
Xiheng CHEN ; Siming GUI ; Dachao WEI ; Dingwei DENG ; Yudi TANG ; Jian LV ; Wei YOU ; Jia JIANG ; Jun LIN ; Huijian GE ; Peng LIU ; Yuhua JIANG ; Lixin MA ; Yunci WANG ; Ming LV ; Youxiang LI
Journal of Stroke 2025;27(2):237-249
Background:
and Purpose Ruptured intracranial aneurysms (RIA) are associated with a mortality rate of up to 40% in the Chinese population, highlighting the critical need for targeted treatment interventions for at-risk individuals. Although the impact of aldehyde dehydrogenase 2 (ALDH2) gene mutations on susceptibility to intracranial aneurysms (IA) is well documented, the potential connection between ALDH2 rs671 single-nucleotide polymorphism (SNP) and RIA remains unexplored. Given the increased prevalence of ALDH2 gene mutations among Chinese Han individuals, it is clinically relevant to investigate the link between ALDH2 rs671 SNP and IA rupture.
Methods:
A prospective study was conducted on 546 patients diagnosed with IA to investigate the association between ALDH2 rs671 SNP and the risk of IA rupture.
Results:
The ALDH2 rs671 SNP (ALDH2*2) was significantly more prevalent in patients with unruptured IA (UIA) than in those with RIA (32.56% vs. 18.58%, P=0.004). Multivariate logistic regression analysis revealed that people with the ALDH2 mutation (ALDH2*1/*2 and ALDH2*2/*2 gene type) had a significantly reduced odds ratio (OR=0.49; 95% confidence level [CI] 0.27–0.88; P=0.018) for RIAs. Age-specific subgroup analysis indicated that the ALDH2 mutation provided a stronger protective effect in individuals aged 60 years and above with IA compared to those under 60 years old (OR=0.38 vs. OR=0.52, both P<0.05).
Conclusion
The incidence of RIA was significantly higher in individuals with a normal ALDH2 gene (ALDH2*1/*1) than in those with an ALDH2 rs671 SNP (ALDH2*1/*2 or ALDH2*2/*2). ALDH2 rs671 SNP may serve as a protective factor against RIA in the Chinese Han population.
3.Aldehyde Dehydrogenase 2 Gene Mutation May Reduce the Risk of Rupture of Intracranial Aneurysm in Chinese Han Population
Xiheng CHEN ; Siming GUI ; Dachao WEI ; Dingwei DENG ; Yudi TANG ; Jian LV ; Wei YOU ; Jia JIANG ; Jun LIN ; Huijian GE ; Peng LIU ; Yuhua JIANG ; Lixin MA ; Yunci WANG ; Ming LV ; Youxiang LI
Journal of Stroke 2025;27(2):237-249
Background:
and Purpose Ruptured intracranial aneurysms (RIA) are associated with a mortality rate of up to 40% in the Chinese population, highlighting the critical need for targeted treatment interventions for at-risk individuals. Although the impact of aldehyde dehydrogenase 2 (ALDH2) gene mutations on susceptibility to intracranial aneurysms (IA) is well documented, the potential connection between ALDH2 rs671 single-nucleotide polymorphism (SNP) and RIA remains unexplored. Given the increased prevalence of ALDH2 gene mutations among Chinese Han individuals, it is clinically relevant to investigate the link between ALDH2 rs671 SNP and IA rupture.
Methods:
A prospective study was conducted on 546 patients diagnosed with IA to investigate the association between ALDH2 rs671 SNP and the risk of IA rupture.
Results:
The ALDH2 rs671 SNP (ALDH2*2) was significantly more prevalent in patients with unruptured IA (UIA) than in those with RIA (32.56% vs. 18.58%, P=0.004). Multivariate logistic regression analysis revealed that people with the ALDH2 mutation (ALDH2*1/*2 and ALDH2*2/*2 gene type) had a significantly reduced odds ratio (OR=0.49; 95% confidence level [CI] 0.27–0.88; P=0.018) for RIAs. Age-specific subgroup analysis indicated that the ALDH2 mutation provided a stronger protective effect in individuals aged 60 years and above with IA compared to those under 60 years old (OR=0.38 vs. OR=0.52, both P<0.05).
Conclusion
The incidence of RIA was significantly higher in individuals with a normal ALDH2 gene (ALDH2*1/*1) than in those with an ALDH2 rs671 SNP (ALDH2*1/*2 or ALDH2*2/*2). ALDH2 rs671 SNP may serve as a protective factor against RIA in the Chinese Han population.
4.A multi-center epidemiological study on pneumococcal meningitis in children from 2019 to 2020
Cai-Yun WANG ; Hong-Mei XU ; Gang LIU ; Jing LIU ; Hui YU ; Bi-Quan CHEN ; Guo ZHENG ; Min SHU ; Li-Jun DU ; Zhi-Wei XU ; Li-Su HUANG ; Hai-Bo LI ; Dong WANG ; Song-Ting BAI ; Qing-Wen SHAN ; Chun-Hui ZHU ; Jian-Mei TIAN ; Jian-Hua HAO ; Ai-Wei LIN ; Dao-Jiong LIN ; Jin-Zhun WU ; Xin-Hua ZHANG ; Qing CAO ; Zhong-Bin TAO ; Yuan CHEN ; Guo-Long ZHU ; Ping XUE ; Zheng-Zhen TANG ; Xue-Wen SU ; Zheng-Hai QU ; Shi-Yong ZHAO ; Lin PANG ; Hui-Ling DENG ; Sai-Nan SHU ; Ying-Hu CHEN
Chinese Journal of Contemporary Pediatrics 2024;26(2):131-138
Objective To investigate the clinical characteristics and prognosis of pneumococcal meningitis(PM),and drug sensitivity of Streptococcus pneumoniae(SP)isolates in Chinese children.Methods A retrospective analysis was conducted on clinical information,laboratory data,and microbiological data of 160 hospitalized children under 15 years old with PM from January 2019 to December 2020 in 33 tertiary hospitals across the country.Results Among the 160 children with PM,there were 103 males and 57 females.The age ranged from 15 days to 15 years,with 109 cases(68.1% )aged 3 months to under 3 years.SP strains were isolated from 95 cases(59.4% )in cerebrospinal fluid cultures and from 57 cases(35.6% )in blood cultures.The positive rates of SP detection by cerebrospinal fluid metagenomic next-generation sequencing and cerebrospinal fluid SP antigen testing were 40% (35/87)and 27% (21/78),respectively.Fifty-five cases(34.4% )had one or more risk factors for purulent meningitis,113 cases(70.6% )had one or more extra-cranial infectious foci,and 18 cases(11.3% )had underlying diseases.The most common clinical symptoms were fever(147 cases,91.9% ),followed by lethargy(98 cases,61.3% )and vomiting(61 cases,38.1% ).Sixty-nine cases(43.1% )experienced intracranial complications during hospitalization,with subdural effusion and/or empyema being the most common complication[43 cases(26.9% )],followed by hydrocephalus in 24 cases(15.0% ),brain abscess in 23 cases(14.4% ),and cerebral hemorrhage in 8 cases(5.0% ).Subdural effusion and/or empyema and hydrocephalus mainly occurred in children under 1 year old,with rates of 91% (39/43)and 83% (20/24),respectively.SP strains exhibited complete sensitivity to vancomycin(100% ,75/75),linezolid(100% ,56/56),and meropenem(100% ,6/6).High sensitivity rates were also observed for levofloxacin(81% ,22/27),moxifloxacin(82% ,14/17),rifampicin(96% ,25/26),and chloramphenicol(91% ,21/23).However,low sensitivity rates were found for penicillin(16% ,11/68)and clindamycin(6% ,1/17),and SP strains were completely resistant to erythromycin(100% ,31/31).The rates of discharge with cure and improvement were 22.5% (36/160)and 66.2% (106/160),respectively,while 18 cases(11.3% )had adverse outcomes.Conclusions Pediatric PM is more common in children aged 3 months to under 3 years.Intracranial complications are more frequently observed in children under 1 year old.Fever is the most common clinical manifestation of PM,and subdural effusion/emphysema and hydrocephalus are the most frequent complications.Non-culture detection methods for cerebrospinal fluid can improve pathogen detection rates.Adverse outcomes can be noted in more than 10% of PM cases.SP strains are high sensitivity to vancomycin,linezolid,meropenem,levofloxacin,moxifloxacin,rifampicin,and chloramphenicol.[Chinese Journal of Contemporary Pediatrics,2024,26(2):131-138]
5.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
6.The Uptake and Distribution Evidence of Nano-and Microplastics in vivo after a Single High Dose of Oral Exposure
Tao HONG ; Wei SUN ; Yuan DENG ; Da Jian LYU ; Hong Cui JIN ; Long Ying BAI ; Jun NA ; Rui ZHANG ; Yuan GAO ; Wei Guo PAN ; Sen Zuo YANG ; Jun Ling YAN
Biomedical and Environmental Sciences 2024;37(1):31-41
Objective Tissue uptake and distribution of nano-/microplastics was studied at a single high dose by gavage in vivo.Methods Fluorescent microspheres (100 nm, 3 μm, and 10 μm) were given once at a dose of 200 mg/(kg·body weight). The fluorescence intensity (FI) in observed organs was measured using the IVIS Spectrum at 0.5, 1, 2, and 4 h after administration. Histopathology was performed to corroborate these findings.Results In the 100 nm group, the FI of the stomach and small intestine were highest at 0.5 h, and the FI of the large intestine, excrement, lung, kidney, liver, and skeletal muscles were highest at 4 h compared with the control group (P < 0.05). In the 3 μm group, the FI only increased in the lung at 2 h (P < 0.05). In the 10 μm group, the FI increased in the large intestine and excrement at 2 h, and in the kidney at 4 h (P < 0.05). The presence of nano-/microplastics in tissues was further verified by histopathology. The peak time of nanoplastic absorption in blood was confirmed.Conclusion Nanoplastics translocated rapidly to observed organs/tissues through blood circulation;however, only small amounts of MPs could penetrate the organs.
7.Construction and validation of predictive models for intravenous immunoglobulin–resistant Kawasaki disease using an interpretable machine learning approach
Linfan DENG ; Jian ZHAO ; Ting WANG ; Bin LIU ; Jun JIANG ; Peng JIA ; Dong LIU ; Gang LI
Clinical and Experimental Pediatrics 2024;67(8):405-414
Background:
Intravenous immunoglobulin (IVIG)-resistant Kawasaki disease is associated with coronary artery lesion development.Purpose: This study aimed to explore the factors associated with IVIG-resistance and construct and validate an interpretable machine learning (ML) prediction model in clinical practice.
Methods:
Between December 2014 and November 2022, 602 patients were screened and risk factors for IVIG-resistance investigated. Five ML models are used to establish an optimal prediction model. The SHapley Additive exPlanations (SHAP) method was used to interpret the ML model.
Results:
Na+, hemoglobin (Hb), C-reactive protein (CRP), and globulin were independent risk factors for IVIG-resistance. A nonlinear relationship was identified between globulin level and IVIG-resistance. The XGBoost model exhibited excellent performance, with an area under the receiver operating characteristic curve of 0.821, accuracy of 0.748, sensitivity of 0.889, and specificity of 0.683 in the testing set. The XGBoost model was interpreted globally and locally using the SHAP method.
Conclusion
Na+, Hb, CRP, and globulin levels were independently associated with IVIG-resistance. Our findings demonstrate that ML models can reliably predict IVIG-resistance. Moreover, use of the SHAP method to interpret the established XGBoost model's findings would provide evidence of IVIG-resistance and guide the individualized treatment of Kawasaki disease.
8.Construction and validation of predictive models for intravenous immunoglobulin–resistant Kawasaki disease using an interpretable machine learning approach
Linfan DENG ; Jian ZHAO ; Ting WANG ; Bin LIU ; Jun JIANG ; Peng JIA ; Dong LIU ; Gang LI
Clinical and Experimental Pediatrics 2024;67(8):405-414
Background:
Intravenous immunoglobulin (IVIG)-resistant Kawasaki disease is associated with coronary artery lesion development.Purpose: This study aimed to explore the factors associated with IVIG-resistance and construct and validate an interpretable machine learning (ML) prediction model in clinical practice.
Methods:
Between December 2014 and November 2022, 602 patients were screened and risk factors for IVIG-resistance investigated. Five ML models are used to establish an optimal prediction model. The SHapley Additive exPlanations (SHAP) method was used to interpret the ML model.
Results:
Na+, hemoglobin (Hb), C-reactive protein (CRP), and globulin were independent risk factors for IVIG-resistance. A nonlinear relationship was identified between globulin level and IVIG-resistance. The XGBoost model exhibited excellent performance, with an area under the receiver operating characteristic curve of 0.821, accuracy of 0.748, sensitivity of 0.889, and specificity of 0.683 in the testing set. The XGBoost model was interpreted globally and locally using the SHAP method.
Conclusion
Na+, Hb, CRP, and globulin levels were independently associated with IVIG-resistance. Our findings demonstrate that ML models can reliably predict IVIG-resistance. Moreover, use of the SHAP method to interpret the established XGBoost model's findings would provide evidence of IVIG-resistance and guide the individualized treatment of Kawasaki disease.
9.Construction and validation of predictive models for intravenous immunoglobulin–resistant Kawasaki disease using an interpretable machine learning approach
Linfan DENG ; Jian ZHAO ; Ting WANG ; Bin LIU ; Jun JIANG ; Peng JIA ; Dong LIU ; Gang LI
Clinical and Experimental Pediatrics 2024;67(8):405-414
Background:
Intravenous immunoglobulin (IVIG)-resistant Kawasaki disease is associated with coronary artery lesion development.Purpose: This study aimed to explore the factors associated with IVIG-resistance and construct and validate an interpretable machine learning (ML) prediction model in clinical practice.
Methods:
Between December 2014 and November 2022, 602 patients were screened and risk factors for IVIG-resistance investigated. Five ML models are used to establish an optimal prediction model. The SHapley Additive exPlanations (SHAP) method was used to interpret the ML model.
Results:
Na+, hemoglobin (Hb), C-reactive protein (CRP), and globulin were independent risk factors for IVIG-resistance. A nonlinear relationship was identified between globulin level and IVIG-resistance. The XGBoost model exhibited excellent performance, with an area under the receiver operating characteristic curve of 0.821, accuracy of 0.748, sensitivity of 0.889, and specificity of 0.683 in the testing set. The XGBoost model was interpreted globally and locally using the SHAP method.
Conclusion
Na+, Hb, CRP, and globulin levels were independently associated with IVIG-resistance. Our findings demonstrate that ML models can reliably predict IVIG-resistance. Moreover, use of the SHAP method to interpret the established XGBoost model's findings would provide evidence of IVIG-resistance and guide the individualized treatment of Kawasaki disease.
10.Construction and validation of predictive models for intravenous immunoglobulin–resistant Kawasaki disease using an interpretable machine learning approach
Linfan DENG ; Jian ZHAO ; Ting WANG ; Bin LIU ; Jun JIANG ; Peng JIA ; Dong LIU ; Gang LI
Clinical and Experimental Pediatrics 2024;67(8):405-414
Background:
Intravenous immunoglobulin (IVIG)-resistant Kawasaki disease is associated with coronary artery lesion development.Purpose: This study aimed to explore the factors associated with IVIG-resistance and construct and validate an interpretable machine learning (ML) prediction model in clinical practice.
Methods:
Between December 2014 and November 2022, 602 patients were screened and risk factors for IVIG-resistance investigated. Five ML models are used to establish an optimal prediction model. The SHapley Additive exPlanations (SHAP) method was used to interpret the ML model.
Results:
Na+, hemoglobin (Hb), C-reactive protein (CRP), and globulin were independent risk factors for IVIG-resistance. A nonlinear relationship was identified between globulin level and IVIG-resistance. The XGBoost model exhibited excellent performance, with an area under the receiver operating characteristic curve of 0.821, accuracy of 0.748, sensitivity of 0.889, and specificity of 0.683 in the testing set. The XGBoost model was interpreted globally and locally using the SHAP method.
Conclusion
Na+, Hb, CRP, and globulin levels were independently associated with IVIG-resistance. Our findings demonstrate that ML models can reliably predict IVIG-resistance. Moreover, use of the SHAP method to interpret the established XGBoost model's findings would provide evidence of IVIG-resistance and guide the individualized treatment of Kawasaki disease.

Result Analysis
Print
Save
E-mail