1.Chinese expert consensus on postoperative follow-up for non-small cell lung cancer (version 2025)
Lunxu LIU ; Shugeng GAO ; Jianxing HE ; Jian HU ; Di GE ; Hecheng LI ; Mingqiang KANG ; Fengwei TAN ; Fan YANG ; Qiang PU ; Kaican CAI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):281-290
Surgical treatment is one of the key approaches for non-small cell lung cancer (NSCLC). Regular postoperative follow-up is crucial for early detection and timely management of tumor recurrence, metastasis, or second primary tumors. A scientifically sound and reasonable follow-up strategy not only extends patient survival but also significantly improves quality of life, thereby enhancing overall prognosis. This consensus aims to build upon the previous version by incorporating the latest clinical research advancements and refining postoperative follow-up protocols for early-stage NSCLC patients based on different treatment modalities. It provides a scientific and practical reference for clinicians involved in the postoperative follow-up management of NSCLC. By optimizing follow-up strategies, this consensus seeks to promote the standardization and normalization of lung cancer diagnosis and treatment in China, helping more patients receive high-quality care and long-term management. Additionally, the release of this consensus is expected to provide insights for related research and clinical practice both domestically and internationally, driving continuous development and innovation in the field of postoperative management for NSCLC.
2.Deep learning for accurate lung artery segmentation with shape-position priors
Chao GUO ; Xuehan GAO ; Qidi HU ; Jian LI ; Haixing ZHU ; Ke ZHAO ; Weipeng LIU ; Shanqing LI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):332-338
Objective To propose a lung artery segmentation method that integrates shape and position prior knowledge, aiming to solve the issues of inaccurate segmentation caused by the high similarity and small size differences between the lung arteries and surrounding tissues in CT images. Methods Based on the three-dimensional U-Net network architecture and relying on the PARSE 2022 database image data, shape and position prior knowledge was introduced to design feature extraction and fusion strategies to enhance the ability of lung artery segmentation. The data of the patients were divided into three groups: a training set, a validation set, and a test set. The performance metrics for evaluating the model included Dice Similarity Coefficient (DSC), sensitivity, accuracy, and Hausdorff distance (HD95). Results The study included lung artery imaging data from 203 patients, including 100 patients in the training set, 30 patients in the validation set, and 73 patients in the test set. Through the backbone network, a rough segmentation of the lung arteries was performed to obtain a complete vascular structure; the branch network integrating shape and position information was used to extract features of small pulmonary arteries, reducing interference from the pulmonary artery trunk and left and right pulmonary arteries. Experimental results showed that the segmentation model based on shape and position prior knowledge had a higher DSC (82.81%±3.20% vs. 80.47%±3.17% vs. 80.36%±3.43%), sensitivity (85.30%±8.04% vs. 80.95%±6.89% vs. 82.82%±7.29%), and accuracy (81.63%±7.53% vs. 81.19%±8.35% vs. 79.36%±8.98%) compared to traditional three-dimensional U-Net and V-Net methods. HD95 could reach (9.52±4.29) mm, which was 6.05 mm shorter than traditional methods, showing excellent performance in segmentation boundaries. Conclusion The lung artery segmentation method based on shape and position prior knowledge can achieve precise segmentation of lung artery vessels and has potential application value in tasks such as bronchoscopy or percutaneous puncture surgery navigation.
3.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen.
4.Identification of Alumen and Ammonium alum Based on XRD, FTIR, TG-DTA Combined with Chemometrics
Bin WANG ; Jingwei ZHOU ; Huangsheng ZHANG ; Jian FENG ; Hanxi LI ; Guorong MEI ; Jiaquan JIANG ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU ; Shilin CHEN ; Lin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):178-186
ObjectiveTo establish the multi-technique characteristic profiles of Alumen by X-ray diffraction(XRD), Fourier-transform infrared spectroscopy(FTIR) and thermogravimetric-differential thermal analysis(TG-DTA), and to explore the spectral characteristics for rapid identification of Alumen and its potential adulterant, Ammonium alum. MethodsA total of 27 batches of Alumen samples from 8 production regions were collected for preliminary identification based on visual characteristics. The PDF standard cards of XRD were used to differentiate Alumen from A. alum, and the XRD characteristic profiles of Alumen were established, and then the common peaks were screened. Based on hierarchical clustering analysis(HCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), the characteristic information that could be used for identification of Alumen was selected with variable importance in the projection(VIP) value>1. FTIR characteristic profiles of Alumen were established, and key wavenumbers for identification were screened by HCA and OPLS-DA with VIP value>1. Meanwhile, the thermogravimetric differences between Alumen and A. alum were analyzed by TG-DTA, and the thermogravimetric traits that could be used for identification were screened. ResultsAlumen and A. alum could not be effectively distinguished by traits alone. However, by comparing the PDF standard cards of XRD, 15 batches of Alumen and 12 batches of A. alum could be distinguished. In the XRD profiles, 10 characteristic peaks were confirmed, corresponding to diffraction angles of 14.560°, 24.316°, 12.620°, 32.122°, 17.898°, 34.642°, 27.496°, 46.048°, 40.697° and 21.973°. In the FTIR profiles, 4 wavenumber ranges(399.193-403.050, 1 186.010-1 471.420, 1 801.190-2 620.790, 3 612.020-3 997.710 cm-1) and 12 characteristic wavenumbers(1 428.994, 1 430.922, 1 432.851, 1 434.779, 1 436.708, 1 438.636, 1 440.565, 1 442.493, 1 444.422, 1 446.350, 1 448.279, 1 450.207 cm-1) were identified. In the TG-DTA profiles, there were characteristic decomposition peaks of ammonium ion and mass reduction features near 555.34 ℃ for A. alum. These characteristics could serve as important criteria for distinguishing the authenticity of Alumen. ConclusionXRD, FTIR and TG-DTA can be used to rapidly detect Alumen and A. alum, and combined with the discriminant features selected through chemometrics, the rapid and accurate identification of Alumen and A. alum can be achieved. The research findings provide new approaches for the rapid identification of Alumen.
5.Identification of Alumen and Ammonium alum Based on XRD, FTIR, TG-DTA Combined with Chemometrics
Bin WANG ; Jingwei ZHOU ; Huangsheng ZHANG ; Jian FENG ; Hanxi LI ; Guorong MEI ; Jiaquan JIANG ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU ; Shilin CHEN ; Lin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):178-186
ObjectiveTo establish the multi-technique characteristic profiles of Alumen by X-ray diffraction(XRD), Fourier-transform infrared spectroscopy(FTIR) and thermogravimetric-differential thermal analysis(TG-DTA), and to explore the spectral characteristics for rapid identification of Alumen and its potential adulterant, Ammonium alum. MethodsA total of 27 batches of Alumen samples from 8 production regions were collected for preliminary identification based on visual characteristics. The PDF standard cards of XRD were used to differentiate Alumen from A. alum, and the XRD characteristic profiles of Alumen were established, and then the common peaks were screened. Based on hierarchical clustering analysis(HCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), the characteristic information that could be used for identification of Alumen was selected with variable importance in the projection(VIP) value>1. FTIR characteristic profiles of Alumen were established, and key wavenumbers for identification were screened by HCA and OPLS-DA with VIP value>1. Meanwhile, the thermogravimetric differences between Alumen and A. alum were analyzed by TG-DTA, and the thermogravimetric traits that could be used for identification were screened. ResultsAlumen and A. alum could not be effectively distinguished by traits alone. However, by comparing the PDF standard cards of XRD, 15 batches of Alumen and 12 batches of A. alum could be distinguished. In the XRD profiles, 10 characteristic peaks were confirmed, corresponding to diffraction angles of 14.560°, 24.316°, 12.620°, 32.122°, 17.898°, 34.642°, 27.496°, 46.048°, 40.697° and 21.973°. In the FTIR profiles, 4 wavenumber ranges(399.193-403.050, 1 186.010-1 471.420, 1 801.190-2 620.790, 3 612.020-3 997.710 cm-1) and 12 characteristic wavenumbers(1 428.994, 1 430.922, 1 432.851, 1 434.779, 1 436.708, 1 438.636, 1 440.565, 1 442.493, 1 444.422, 1 446.350, 1 448.279, 1 450.207 cm-1) were identified. In the TG-DTA profiles, there were characteristic decomposition peaks of ammonium ion and mass reduction features near 555.34 ℃ for A. alum. These characteristics could serve as important criteria for distinguishing the authenticity of Alumen. ConclusionXRD, FTIR and TG-DTA can be used to rapidly detect Alumen and A. alum, and combined with the discriminant features selected through chemometrics, the rapid and accurate identification of Alumen and A. alum can be achieved. The research findings provide new approaches for the rapid identification of Alumen.
6.Effect of Huangqin Qingre Chubi Capsules-containing Serum on CircRNA_0001543/NF-κB Expression in Co-cultured PBMCs and Human FLSs from Patients with Ankylosing Spondylitis
Yajun QI ; Jian LIU ; Qiao ZHOU ; Yuedi HU ; Xiang DING ; Chengzhi CONG ; Xu LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):87-95
ObjectiveThis study aims to explore the effects of Huangqin Qingre Chubi capsules-containing serum on the expression of CircRNA_0001543/nuclear factor-kappa B (NF-κB) in co-cultured peripheral blood mononuclear cells (PBMCs) and human fibroblast-like synoviocytes (FLSs) from patients with ankylosing spondylitis (AS). MethodsVenous blood was collected from patients with AS to isolate PBMCs. FLSs were co-cultured with AS patients' PBMCs, and FLSs were harvested after co-culture for subsequent experiments. The normal control group consisted of normal FLSs, while the model group comprised co-cultured AS PBMCs and FLSs to simulate AS pathology. The Huangqin Qingre Chubi capsules group involved adding Huangqin Qingre Chubi capsules-containing serum to the co-cultured cells(6.48 g·kg-1). To investigate the effect of HQC-containing serum on the viability of co-cultured cells, and the experiment was divided into the following groups based on the dilution concentration: blank group, 10% HQC group, 20% HQC group, and 30% HQC group.To study the influence of the optimal concentration of HQC-containing serum on cytokine and pathway indicators in each group, the experiment was divided into three groups: normal group, model group, and optimal concentration HQC-containing serum group.For the validation of the transfection efficiency of the CircRNA_0001543 interference plasmid, the experiment was divided into the following groups: blank group, si-NC group (with transfection reagent), si-circ_0001543-1 group (with transfection reagent and interference plasmid No. 1 targeting circ_0001543), si-circ_0001543-2 group (with transfection reagent and interference plasmid No. 2 targeting circ_0001543), and si-circ_0001543-3 group (with transfection reagent and interference plasmid No. 3 targeting circ_0001543).For the validation of the transfection efficiency of the CircRNA_0001543 overexpression plasmid, the experiment was divided into the following groups: blank group, OE-NC group (with transfection reagent), and OE-circ_0001543 group (with transfection reagent and overexpression plasmid targeting circ_0001543).To study the effects of CircRNA_0001543 interference/overexpression on cytokine and pathway indicators in each group, the experiment was divided into the following groups: si-NC group, si-CircRNA_0001543 group, OE-NC group, and OE-CircRNA_0001543 group. Enzyme-linked immunosorbent assay (ELISA) was used to detect levels of interleukin-1β (IL-1β), IL-10, IL-37, and tumor necrosis factor-α (TNF-α). Real-time quantitative polymerase chain reaction (Real-time PCR) was utilized to measure the expression of CircRNA_0001543, IκBα, and NF-κB p65. ResultsAfter 48 hours, 30% Huangqin Qingre Chubi Capsules-containing serum significantly inhibited the proliferation of co-cultured PBMCs and FLSs, which was determined to be the optimal experimental drug-containing serum concentration. Compared with those in the normal group, the expressions of NF-κB p65 mRNA, IκBα mRNA, IL-1β, and TNF-α in the model group were significantly increased (P<0.01), while the expressions of CircRNA_0001543 mRNA, IL-10, and IL-37 were significantly decreased (P<0.01). Compared with those in the model group, the expressions of NF-κB p65 mRNA, IκBα mRNA, IL-1β, and TNF-α in the Huangqin Qingre Chubi Capsules-containing serum group were significantly decreased (P<0.05), and the expressions of CircRNA_0001543 mRNA, IL-10, and IL-37 were significantly increased (P<0.05), with the most prominent changes in the 30% drug-containing serum group (P<0.01). Compared with that in the si-NC group, the expression of CircRNA_0001543 was significantly reduced in the si-CircRNA_0001543 group (P<0.01). Compared with that in the OE-NC group, the expression of CircRNA_0001543 was significantly increased in the OE-CircRNA_0001543 group (P<0.01), indicating that the si-CircRNA_0001543 and OE-CircRNA_0001543 plasmids were successfully transfected. Based on the optimal drug-containing serum of Huangqin Qingre Chubi Capsules, si-CircRNA_0001543 transfection led to significantly increased expressions of NF-κB p65 mRNA, IκBα mRNA, IL-1β, and TNF-α and decreased the expressions of IL-10 and IL-37 (P<0.01). In contrast, OE-CircRNA_0001543 transfection significantly decreased the expressions of NF-κB p65 mRNA, IκBα mRNA, IL-1β, and TNF-α (P<0.01) and increased the expressions of IL-10 and IL-37 (P<0.01). ConclusionHuangqin Qingre Chubi capsules-containing serum can improve immune inflammation in AS by increasing the expression of CircRNA_0001543, regulating the NF-κB pathway, suppressing pro-inflammatory cytokines, and enhancing anti-inflammatory cytokine expression.
7.Design, synthesis and anticancer activity of superoxide anion-releasing beta-galactoside prodrugs
Jiaxuan LIU ; Xueyan YAO ; Yunying TAN ; Jing HU ; Junjie FU ; Jian YIN
Journal of China Pharmaceutical University 2025;56(3):295-304
Four novel β-galactoside prodrugs were designed and synthesized from anthraquinones HAQ-OH and AQ-OH in an attempt to use the prodrugs to selectively release superoxide anion (O2−) in cancer cells and to achieve selected anticancer activity by utilizing the Warburg effect and the elevated level of β-galactosidase in certain cancer cells. Cellular assays showed that the prodrugs Gal-HAQ and Gal-AQ selectively inhibited the proliferation and induced apoptosis of ovarian cancer OVCAR-3 cells overexpressing β-galactosidase. Using O2− fluorescent probe, it was found that in OVCAR-3 cells Gal-HAQ and Gal-AQ could time-dependently release O2−, which was essential for their anticancer activity. Furthermore, it was found that Gal-HAQ and Gal-AQ were effective senolytics toward senescent cells overexpressing β-galactosidase without affecting the viability of corresponding non-senescent cells, further confirming the β-galactosidase-dependent cytotoxicity of the prodrugs. In conclusion, Gal-HAQ and Gal-AQ, which release O2− in response to β-galactosidase, are expected to serve as candidate prodrugs targeting cancer cells.
8.Novel CD19 Fast-CAR-T cells vs. CD19 conventional CAR-T cells for the treatment of relapsed/refractory CD19-positive B-cell acute lymphoblastic leukemia.
Xu TAN ; Jishi WANG ; Shangjun CHEN ; Li LIU ; Yuhua LI ; Sanfang TU ; Hai YI ; Jian ZHOU ; Sanbin WANG ; Ligen LIU ; Jian GE ; Yongxian HU ; Xiaoqi WANG ; Lu WANG ; Guo CHEN ; Han YAO ; Cheng ZHANG ; Xi ZHANG
Chinese Medical Journal 2025;138(19):2491-2497
BACKGROUND:
Treatment with chimeric antigen receptor-T (CAR-T) cells has shown promising effectiveness in patients with relapsed/refractory B-cell acute lymphoblastic leukemia (R/R B-ALL), although the process of preparing for this therapy usually takes a long time. We have recently created CD19 Fast-CAR-T (F-CAR-T) cells, which can be produced within a single day. The objective of this study was to evaluate and contrast the effectiveness and safety of CD19 F-CAR-T cells with those of CD19 conventional CAR-T cells in the management of R/R B-ALL.
METHODS:
A multicenter, retrospective analysis of the clinical data of 44 patients with R/R B-ALL was conducted. Overall, 23 patients were administered with innovative CD19 F-CAR-T cells (F-CAR-T group), whereas 21 patients were given CD19 conventional CAR-T cells (C-CAR-T group). We compared the rates of complete remission (CR), minimal residual disease (MRD)-negative CR, leukemia-free survival (LFS), overall survival (OS), and the incidence of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) between the two groups.
RESULTS:
Compared with the C-CAR-T group, the F-CAR-T group had significantly higher CR and MRD-negative rates (95.7% and 91.3%, respectively; 71.4% and 66.7%, respectively; P = 0.036 and P = 0.044). No significant differences were observed in the 1-year or 2-year LFS or OS rates between the two groups: the 1-year and 2-year LFS for the F-CAR-T group vs.C-CAR-T group were 47.8% and 43.5% vs. 38.1% and 23.8% (P = 0.384 and P = 0.216), while the 1-year and 2-year OS rates were 65.2% and 56.5% vs. 52.4% and 47.6% (P = 0.395 and P = 0.540). Additionally, among CR patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) following CAR-T-cell therapy, there were no significant differences in the 1-year or 2-year LFS or OS rates: 57.1% and 50.0% vs. 47.8% and 34.8% (P = 0.506 and P = 0.356), 64.3% and 57.1% vs. 65.2% and 56.5% (P = 0.985 and P = 0.883), respectively. The incidence of CRS was greater in the F-CAR-T group (91.3%) than in the C-CAR-T group (66.7%) (P = 0.044). The incidence of ICANS was also greater in the F-CAR-T group (30.4%) than in the C-CAR-T group (9.5%) (P = 0.085), but no treatment-related deaths occurred in the two groups.
CONCLUSION
Compared with C-CAR-T-cell therapy, F-CAR-T-cell therapy has a superior remission rate but also leads to a tolerably increased incidence of CRS/ICANS. Further research is needed to explore the function of allo-HSCT as an intermediary therapy after CAR-T-cell therapy.
9.Processing technology of calcined Magnetitum based on concept of QbD and its XRD characteristic spectra.
De-Wen ZENG ; Jing-Wei ZHOU ; Tian-Xing HE ; Yu-Mei CHEN ; Huan-Huan XU ; Jian FENG ; Yue YANG ; Xin CHEN ; Jia-Liang ZOU ; Lin CHEN ; Hong-Ping CHEN ; Shi-Lin CHEN ; Yuan HU ; You-Ping LIU
China Journal of Chinese Materia Medica 2025;50(9):2391-2403
Guided by the concept of quality by design(QbD), this study optimizes the calcination and quenching process of calcined Magnetitum and establishes the XRD characteristic spectra of calcined Magnetitum, providing a scientific basis for the formulation of quality standards. Based on the processing methods and quality requirements of Magnetitum in the Chinese Pharmacopoeia, the critical process parameters(CPPs) identified were calcination temperature, calcination time, particle size, laying thickness, and the number of vinegar quenching cycles. The critical quality attributes(CQAs) included Fe mass fraction, Fe~(2+) dissolution, and surface color. The weight coefficients were determined by combining Analytic Hierarchy Process(AHP) and the criteria importance though intercrieria correlation(CRITIC) method, and the calcination process was optimized using orthogonal experimentation. Surface color was selected as a CQA, and based on the principle of color value, the surface color of calcined Magnetitum was objectively quantified. The vinegar quenching process was then optimized to determine the best processing conditions. X-ray diffraction(XRD) was used to establish the characteristic spectra of calcined Magnetitum, and methods such as similarity evaluation, cluster analysis, and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to evaluate the quality of the spectra. The optimized calcined Magnetitum preparation process was found to be calcination at 750 ℃ for 1 h, with a laying thickness of 4 cm, a particle size of 0.4-0.8 cm, and one vinegar quenching cycle(Magnetitum-vinegar ratio 10∶3), which was stable and feasible. The XRD characteristic spectra analysis method, featuring 9 common peaks as fingerprint information, was established. The average correlation coefficient ranged from 0.839 5-0.988 1, and the average angle cosine ranged from 0.914 4 to 0.995 6, indicating good similarity. Cluster analysis results showed that Magnetitum and calcined Magnetitum could be grouped together, with similar compositions. OPLS-DA discriminant analysis identified three key characteristic peaks, with Fe_2O_3 being the distinguishing component between the two. The final optimized processing method is stable and feasible, and the XRD characteristic spectra of calcined Magnetitum was initially established, providing a reference for subsequent quality control and the formulation of quality standards for calcined Magnetitum.
X-Ray Diffraction/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Particle Size
10.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires

Result Analysis
Print
Save
E-mail