1.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
2.Mechanism of Zuogui Jiangtang Jieyu Prescription Against Damage to Hippocampal Synaptic Microenvironment via Suppressing GluR2/Parkin Signal-mediated Mitophagy in Rats with Diabetes-related Depression
Jian LIU ; Lin LIU ; Xiaoyuan LIN ; Wei LI ; Yuhong WANG ; Hui YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):104-112
ObjectiveTo reveal the mechanism of Zuogui Jiangtang Jieyu prescription against damage to hippocampal synaptic microenvironment via suppressing glutamate receptor 2 (GluR2)/Parkin signal-mediated mitophagy in rats with diabetes-related depression (DD). MethodsEighty male SD rats underwent adaptive feeding for 5 days before the study. Ten rats were randomly assigned to the normal group. The model of DD rats was established with the rest by 2-week high-fat diet + streptozotocin (STZ) tail intravenous injection + 28 days of chronic unpredictable mild stress (CUMS) combined with isolation. The rats were randomly divided into a normal group, a model group, a GluR2 blocker group (5 μg·kg-1), a GluR2 agonist group (10 μg·kg-1), a metformin + fluoxetine group (0.18 g·kg-1 metformin + 1.8 mg·kg-1 fluoxetine), and high- and low-dose Zuogui Jiangtang Jieyu prescription groups (20.52 and 10.26 g·kg-1, respectively). The rats in the GluR2 blocker group and the GluR2 agonist group were continuously injected with CNQX and Cl-HIBO in the dentate gyrus of the hippocampus once a week starting from stress modeling, respectively, while the metformin + fluoxetine group and the high- and low-dose Zuogui Jiangtang Jieyu prescription groups were continuously given intragastric administration for 28 d at the same time of stress modeling. Depression-like behavior was evaluated by open field and forced swimming experiments. The levels of serum insulin and adenosine triphosphate (ATP) in hippocampus were detected by biochemical analysis. The levels of 5-hydroxytryptamine (5-HT) and dopamine (DA) in hippocampus were detected by enzyme-linked immunosorbent assay (ELISA). The autophagosomes of hippocampal neurons were observed by transmission electron microscopy. The morphology and structure of dendrites and spines of hippocampal neurons were evaluated by Golgi staining. Western blot detected the expression levels of GluR2 and Parkin proteins in hippocampus. The expression levels of GluR2, Parkin, regulating synaptic membrane exocytosis protein 3 (RIMS3), and postsynaptic density protein 95 (PSD95) in the dentate gyrus of the hippocampus were detected by immunofluorescence. ResultsCompared with the normal group, the model group exhibited reduced total activity distance in the open field and increased immobility time in forced swimming (P<0.01), lowered levels of serum insulin and ATP, 5-HT, and DA in hippocampus (P<0.01), increased autophagosomes of hippocampal neurons, significantly damaged morphology and structure of dendrites and spines of hippocampal neurons, decreased expression levels of GluR2, RIMS3, and PSD95 in hippocampus, and an increased Parkin expression level (P<0.05, P<0.01). Compared with the model group, the GluR2 blocker group and the GluR2 agonist group showed aggravation and alleviation of the above abnormal changes, respectively (P<0.05, P<0.01). The above depression-like behavior was significantly improved in the high- and low-dose Zuogui Jiangtang Jieyu prescription groups to different degrees. Specifically, the two groups saw elevated levels of serum insulin and ATP, 5-HT, and DA in hippocampus (P<0.05, P<0.01), restrained increase in autophagosomes and damage to morphology and structure of dendrites and spines of hippocampal neurons, up-regulated protein expression levels of GluR2, RIMS3, and PSD95, and down-regulated Parkin expression level (P<0.05, P<0.01). ConclusionZuogui Jiangtong Jieyu prescription can ameliorate the mitophagy-mediated damage to hippocampal synaptic microenvironment in DD rats, the mechanism of which might be related to the regulation of GluR2/Parkin signaling pathway.
3.Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis
Jian LIU ; Hongchun ZHANG ; Chengxiang WANG ; Hongsheng CUI ; Xia CUI ; Shunan ZHANG ; Daowen YANG ; Cuiling FENG ; Yubo GUO ; Zengtao SUN ; Huiyong ZHANG ; Guangxi LI ; Qing MIAO ; Sumei WANG ; Liqing SHI ; Hongjun YANG ; Ting LIU ; Fangbo ZHANG ; Sheng CHEN ; Wei CHEN ; Hai WANG ; Lin LIN ; Nini QU ; Lei WU ; Dengshan WU ; Yafeng LIU ; Wenyan ZHANG ; Yueying ZHANG ; Yongfen FAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):182-188
The Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis (GS/CACM 337-2023) was released by the China Association of Chinese Medicine on December 13th, 2023. This expert consensus was developed by experts in methodology, pharmacy, and Chinese medicine in strict accordance with the development requirements of the China Association of Chinese Medicine (CACM) and based on the latest medical evidence and the clinical medication experience of well-known experts in the fields of respiratory medicine (pulmonary diseases) and pediatrics. This expert consensus defines the application of Qinbaohong Zhike oral liquid in the treatment of cough and excessive sputum caused by phlegm-heat obstructing lung, acute bronchitis, and acute attack of chronic bronchitis from the aspects of applicable populations, efficacy evaluation, usage, dosage, drug combination, and safety. It is expected to guide the rational drug use in medical and health institutions, give full play to the unique value of Qinbaohong Zhike oral liquid, and vigorously promote the inheritance and innovation of Chinese patent medicines.
4.Clinical Safety Monitoring of 3 035 Cases of Juvenile Feilike Mixture After Marketing in Hospital
Jian ZHU ; Zhong WANG ; Jing LIU ; Jun LIU ; Wei YANG ; Yanan YU ; Hongli WU ; Sha ZHOU ; Zhiyu PAN ; Guang WU ; Mengmeng WU ; Zhiwei JING
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):194-200
ObjectiveTo explore the clinical safety of Feilike Mixture (FLK) in the real world. MethodsThe safety of all children who received FLK from 29 institutions in 12 provinces between January 21,2021 and December 25,2021 was evaluated through prospective centralized surveillance and a nested case control study. ResultsA total of 3 035 juveniles were included. There were 29 research centers involved,which are distributed across 12 provinces,including one traditional Chinese medicine (TCM) hospital and 28 general hospitals. The average age among the juveniles was (4.77±3.56) years old,and the average weight was (21.81±12.97) kg. Among them,119 cases (3.92%) of juveniles had a history of allergies. Acute bronchitis was the main diagnosis for juveniles,with 1 656 cases (54.46%). FLK was first used in 2 016 cases (66.43%),and 142 juvenile patients had special dosages,accounting for 4.68%. Among them,92 adverse drug reactions (ADRs) occurred,including 73 cases of gastrointestinal system disorders,10 cases of metabolic and nutritional disorders,eight cases of skin and subcutaneous tissue diseases,two cases of vascular and lymphatic disorders,and one case of systemic diseases and various reactions at the administration site. The manifestations of ADRs were mainly diarrhea,stool discoloration,and vomiting,and no serious ADRs occurred. The results of multi-factor analysis indicated that special dosages (the use of FLK)[odds ratio (OR) of 2.642, 95% confidence interval (CI) of 1.105-6.323],combined administration: spleen aminopeptide (OR of 4.978, 95%CI of 1.200-20.655),and reason for combined administration: anti-infection (OR of 1.814, 95%CI of 1.071-3.075) were the risk factors for ADRs caused by FLK. Conclusion92 ADRs occurred among 3 035 juveniles using FLK. The incidence of ADRs caused by FLK was 3.03%,and the severity was mainly mild or moderate. Generally,the prognosis was favorable after symptomatic treatment such as drug withdrawal or dosage reduction,suggesting that FLK has good clinical safety.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
7.A machine learning-based trajectory predictive modeling method for manual acupuncture manipulation.
Jian KANG ; Li LI ; Shu WANG ; Xiaonong FAN ; Jie CHEN ; Jinniu LI ; Wenqi ZHANG ; Yuhe WEI ; Ziyi CHEN ; Jingqi YANG ; Jingwen YANG ; Chong SU
Chinese Acupuncture & Moxibustion 2025;45(9):1221-1232
OBJECTIVE:
To propose a machine learning-based method for predicting the trajectories during manual acupuncture manipulation (MAM), aiming to improve the precision and consistency of acupuncture practitioner' operation and provide the real-time suggestions on MAM error correction.
METHODS:
Computer vision technology was used to analyze the hand micromotion when holding needle during acupuncture, and provide a three-dimensional coordinate description method of the index finger joints of the holding hand. Focusing on the 4 typical motions of MAM, a machine learning-based MAM trajectory predictive model was designed. By integrating the changes of phalangeal joint angle and hand skeletal information of acupuncture practitioner, the motion trajectory of the index finger joint was predicted accurately. Besides, the roles of machine learning-based MAM trajectory predictive model in the skill transmission of acupuncture manipulation were verified by stratified randomized controlled trial.
RESULTS:
The performance of MAM trajectory predictive model, based on the long short-term memory network (LSTM), obtained the highest stability and precision, up to 98%. The learning effect was improved when the model applied to the skill transmission of acupuncture manipulation.
CONCLUSION
The machine learning-based MAM predictive model provides acupuncture practitioner with precise action prediction and feedback. It is valuable and significant for the inheritance and error correction of manual operation of acupuncture.
Humans
;
Acupuncture Therapy/instrumentation*
;
Machine Learning
;
Adult
;
Male
;
Female
8.An interpretable machine learning modeling method for the effect of manual acupuncture manipulations on subcutaneous muscle tissue.
Wenqi ZHANG ; Yanan ZHANG ; Yan SHEN ; Chun SUN ; Jie CHEN ; Yuhe WEI ; Jian KANG ; Ziyi CHEN ; Jingqi YANG ; Jingwen YANG ; Chong SU
Chinese Acupuncture & Moxibustion 2025;45(10):1371-1382
OBJECTIVE:
To investigate the effect of manual acupuncture manipulations (MAMs) on subcutaneous muscle tissue, by developing quantitative models of "lifting and thrusting" and "twisting and rotating", based on machine learning techniques.
METHODS:
A depth camera was used to capture the acupuncture operator's hand movements during "lifting and thrusting" and "twisting and rotating" of needle. Simultaneously, the ultrasound imaging was employed to record the muscle tissue responses of the participants. Amplitude and angular features were extracted from the movement data of operators, and muscle fascicle slope features were derived from the data of ultrasound images. The dynamic time warping barycenter averaging algorithm was adopted to align the dual-source data. Various machine learning techniques were applied to build quantitative models, and the performance of each model was compared. The most optimal model was further analyzed for its interpretability.
RESULTS:
Among the quantitative models built for the two types of MAMs, the random forest model demonstrated the best performance. For the quantitative model of the "lifting and thrusting" technique, the coefficient of determination (R2) was 0.825. For the "twisting and rotating" technique, R2 reached 0.872.
CONCLUSION
Machine learning can be used to effectively develop the models and quantify the effects of MAMs on subcutaneous muscle tissue. It provides a new perspective to understand the mechanism of acupuncture therapy and lays a foundation for optimizing acupuncture technology and designing personalized treatment regimen in the future.
Humans
;
Acupuncture Therapy/methods*
;
Machine Learning
;
Male
;
Adult
;
Female
;
Subcutaneous Tissue/diagnostic imaging*
;
Young Adult
9.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
10.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.

Result Analysis
Print
Save
E-mail