1.Cytoplasmic and nuclear NFATc3 cooperatively contributes to vascular smooth muscle cell dysfunction and drives aortic aneurysm and dissection.
Xiu LIU ; Li ZHAO ; Deshen LIU ; Lingna ZHAO ; Yonghua TUO ; Qinbao PENG ; Fangze HUANG ; Zhengkun SONG ; Chuanjie NIU ; Xiaoxia HE ; Yu XU ; Jun WAN ; Peng ZHU ; Zhengyang JIAN ; Jiawei GUO ; Yingying LIU ; Jun LU ; Sijia LIANG ; Shaoyi ZHENG
Acta Pharmaceutica Sinica B 2025;15(7):3663-3684
This study investigated the role of the nuclear factor of activated T cells c3 (NFATc3) in vascular smooth muscle cells (VSMCs) during aortic aneurysm and dissection (AAD) progression and the underlying molecular mechanisms. Cytoplasmic and nuclear NFATc3 levels were elevated in human and mouse AAD. VSMC-NFATc3 deletion reduced thoracic AAD (TAAD) and abdominal aortic aneurysm (AAA) progression in mice, contrary to VSMC-NFATc3 overexpression. VSMC-NFATc3 deletion reduced extracellular matrix (ECM) degradation and maintained the VSMC contractile phenotype. Nuclear NFATc3 targeted and transcriptionally upregulated matrix metalloproteinase 9 (MMP9) and MMP2, promoting ECM degradation and AAD development. NFATc3 promoted VSMC phenotypic switching by binding to eukaryotic elongation factor 2 (eEF2) and inhibiting its phosphorylation in the VSMC cytoplasm. Restoring eEF2 reversed the beneficial effects in VSMC-specific NFATc3-knockout mice. Cabamiquine-targets eEF2 and inhibits protein synthesis-inhibited AAD development and progression in VSMC-NFATc3-overexpressing mice. VSMC-NFATc3 promoted VSMC switch and ECM degradation while exacerbating AAD development, making it a novel potential therapeutic target for preventing and treating AAD.
3.HOXB13 in cancer development: molecular mechanisms and clinical implications.
Jian ZHANG ; Ying Ju LI ; Bo PENG ; Xuna YANG ; Miao CHEN ; Yongxing LI ; Hengbin GAO ; Haitao LI ; Ji ZHENG
Frontiers of Medicine 2025;19(3):439-455
The transcription factor HOXB13 plays crucial roles in cancer development. HOXB13 is abnormally expressed in most cancers, which makes it a valuable therapeutic target for cancer therapy. The level of HOXB13 differs significantly between healthy and cancer tissues, which indicates that the level of HOXB13 is closely related to carcinogenesis. The regulatory network mediated by HOXB13 in cancer proliferation, metastasis, and invasion has been systematically investigated. Moreover, HOXB13 variants play distinct roles in different cancers and populations. By understanding the molecular mechanisms and mutation features of HOXB13, we provide a comprehensive overview of carcinogenesis networks dependent on HOXB13. Finally, we discuss advancements in anticancer therapy targeting HOXB13 and the roles of HOXB13 in drug resistance to molecular-targeted therapies, which serves as a foundation for developing HOXB13-targeted drugs for clinical diagnosis and cancer therapies.
Humans
;
Neoplasms/metabolism*
;
Homeodomain Proteins/metabolism*
;
Carcinogenesis/genetics*
;
Mutation
;
Gene Expression Regulation, Neoplastic
;
Molecular Targeted Therapy
;
Drug Resistance, Neoplasm/genetics*
4.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
5.Study on individualized use of opioid analgesics based on SNP polymorphism
Tingting PENG ; Xiaotao ZHU ; Linlin SONG ; Jian LIU ; Lei ZHENG ; Jing YANG
China Pharmacy 2024;35(24):3041-3045
OBJECTIVE To investigate the correlation between gene polymorphisms and adverse drug reaction (ADR) and demands of opioids, aiming to guide personalized opioid analgesic therapy. METHODS The existing evidence-based medical data were adopted to identify gene loci related to the efficacy and ADR of opioid analgesics and select highly relevant single nucleotide polymorphism (SNP) for a clinical case-control study. The study cohort was divided into two evaluation groups: ADR assessment and drug demand assessment. The ADR assessment group included 254 cancer pain patients and was subdivided into the trial subgroup (with ADR) and the control subgroup (without ADR) based on the presence or absence of ADR following opioid usage; the two subgroups included 126 and 128 patients, respectively. The drug demand assessment group included a total of 120 cancer pain patients, who were divided into trial subgroup (equivalent to a daily dose of oral morphine ≥100 mg) and control subgroup (equivalent to a daily dose of oral morphine <100 mg) based on the different daily doses of opioid analgesics, with 60 patients in each subgroup. Polymorphism detection of SNP loci in these patients was performed using fluorescence in situ hybridization. SPSS 21.0 software and SNPStats genetic models were employed to compare genetic testing results between subgroups and conduct correlation analyses, aiming to evaluate the association of the selected SNP loci with opioid ADR and drug demand inclinical real-world cases. RESULTS The strongly correlated SNP loci identified were CYP2D6*10(rs1065852,C>T), CYP3A5*3(rs776746,A>G),ABCB1(rs1045642,C>T)and OPRM1(rs1799971,A>G). Genetic testing results indicated that the allele frequency distributions of these SNP loci conformed to Hardy-Weinberg equilibrium. Correlation analysis revealed that in the ADR assessment group, compared with control subgroup, the proportion of patients in trial subgroup with the AA genotype of OPRM1 (rs1799971, A>G) was significantly higher (P<0.05); in the drug demand assessment group, compared with control subgroup, the proportion of patients in trial subgroup with the CC+CT genotype of ABCB1 (rs1045642, C>T) was significantly higher (P<0.05). CONCLUSIONS The AA genotype of OPRM1 (rs1799971, A>G) is associated with the occurrence of ADR following oxycodone use. Patients with the CC+ CT genotype of ABCB1( rs1045642, C>T) require higher doses of opioid analgesics.
6.Expert Consensus of Multidisciplinary Diagnosis and Treatment for Paroxysmal Nocturnal Hemoglobinuria(2024)
Miao CHEN ; Chen YANG ; Ziwei LIU ; Wei CAO ; Bo ZHANG ; Xin LIU ; Jingnan LI ; Wei LIU ; Jie PAN ; Jian WANG ; Yuehong ZHENG ; Yuexin CHEN ; Fangda LI ; Shunda DU ; Cong NING ; Limeng CHEN ; Cai YUE ; Jun NI ; Min PENG ; Xiaoxiao GUO ; Tao WANG ; Hongjun LI ; Rongrong LI ; Tong WU ; Bing HAN ; Shuyang ZHANG ; MULTIDISCIPLINE COLLABORATION GROUP ON RARE DISEASE AT PEKING UNION MEDICAL COLLEGE HOSPITAL
Medical Journal of Peking Union Medical College Hospital 2024;15(5):1011-1028
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal hematopoietic stem cell disease caused by abnormal expression of glycosylphosphatidylinositol (GPI) on the cell membrane due to mutations in the phosphatidylinositol glycan class A(PIGA) gene. It is commonly characterized by intravascular hemolysis, repeated thrombosis, and bone marrow failure, as well as multiple systemic involvement symptoms such as renal dysfunction, pulmonary hypertension, swallowing difficulties, chest pain, abdominal pain, and erectile dysfunction. Due to the rarity of PNH and its strong heterogeneity in clinical manifestations, multidisciplinary collaboration is often required for diagnosis and treatment. Peking Union Medical College Hospital, relying on the rare disease diagnosis and treatment platform, has invited multidisciplinary clinical experts to form a unified opinion on the diagnosis and treatment of PNH, and formulated the
7.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
8.Exploration on Targeted Pulmonary Vascular Remodeling for the Treatment of Pulmonary Hypertension Based on Collateral Disease Theory
Xianya CAO ; Junlan TAN ; Runxiu ZHENG ; Jian YI ; Guoran PENG ; Rongzhen DING ; Xia LI ; Feiying WANG ; Aiguo DAI
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(9):18-23
Pulmonary hypertension(PH)is a progressive pulmonary vascular disease that can lead to right heart failure and death.In recent years,the incidence of PH has been increasing year by year and there is a lack of effective treatment.TCM can play an important synergistic role in the treatment of PH.Pulmonary vascular remodeling is a core pathological feature of PH,which is closely related to the physiological structure and pathological changes of the collaterals.Based on the collateral disease theory,this article described the key pathogenesis of PH in TCM and Western medicine,including the lesions of the pulmonary and cardiovascular complexes and pulmonary vascular remodeling,analyzed the physiology of the"collateral-vessel"in PH,sorting out the pathological correlation,and explored TCM targeting pulmonary vascular remodeling in the identification and treatment of PH,so as to provide a new way of thinking for the clinical treatment of PH.
9.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
10.Expert consensus on limb management of patients with transvenous temporary cardiac pacing
Radioactive Interventional Nursing Professional Committee of Chinese Nursing Association ; Huafen LIU ; Jiali ZHOU ; Zheng HUANG ; Zhixia ZHANG ; Jingyu LIANG ; Zhongxiang CAI ; Fuhong CHEN ; Yunying ZHOU ; Yunyan XIANYU ; Lin YAN ; Huidan YU ; Huizhen PENG ; Jian ZHU ; Yuan TIAN ; Yan ZHANG ; Hejun JIANG ; Su ZHANG
Chinese Journal of Nursing 2024;59(13):1581-1583
Objective To form the expert consensus on the limb management of patients with transvenous temporary cardiac pacing,standardize the limb management of patients with transvenous temporary cardiac pacing,and reduce complications related to the limb.Methods Using evidence-based methods,the evidence in this field was searched,evaluated and summarized,and relevant recommendations and research conclusions were extracted and classified by the level of evidence quality,and then the first draft of the consensus was formed.From December 2023 to January 2024,through 2 rounds of expert consultation and 4 rounds of expert meetings,the content was adjusted and the consensus was reached.Results Totally 16 experts participated in the consultation.The positive coefficient is 100%;the authoritative coefficient is 0.847 and 0.836;the average value of each index is more than>3.8;the coefficient of variation is less than 0.21.The Kendall's harmony coefficient of the 2 rounds of expert consultation is 0.372 and 0.314,respectively,which were statistically significant.The consensus covers the preoperative,intraoperative and postoperative on limb management of patients with transvenous temporary cardiac pacing.Totally 11 themes were involved,including the preoperative preparation,position and catheter fixation in operation,position and catheter fixation in postoperative,activity,turn and transfer,duty shift on limb,nursing care after withdrawal of the catheter,prevention of deep vein thrombosis of the operative limb and prevent infection.Conclusion The consensus is highly scientific,and it is helpful to standardize the limb management of patients with transvenous temporary cardiac pacing.

Result Analysis
Print
Save
E-mail