1.Effect of Biejia Decoction Pill on aerobic glycolysis in hepatocellular carcinoma by regulating the protein kinase B/mammalian target of rapamycin signaling pathway
Qinwen TAN ; Jingjing HUANG ; Ruixi ZHONG ; Yuanqin DU ; Jian XU ; Jinli NONG ; Yujiao PENG
Journal of Clinical Hepatology 2025;41(2):300-306
ObjectiveTo investigate the inhibitory effect of Biejia Decoction Pill on the proliferation, migration, and aerobic glycolysis of hepatocellular carcinoma (HCC) using cell experiments, as well as related mechanisms. MethodsHuman liver cancer cell line Huh7 was selected, and Sprague-Dawley rats were randomly divided into blank serum group, inhibitor group, and high-, middle-, and low-dose Biejia Decoction Pill groups. Rat serum containing the drug was prepared for the incubation of Huh7 cells. CCK8 assay and scratch assay were used to explore the effect of Biejia Decoction Pill on the proliferation and migration of HCC cells; glycolytic rate-limiting enzymes and metabolites were measured to explore the effect of Biejia Decoction Pill on aerobic glycolysis of liver cancer cells; RT-qPCR and Western blot were used to explore the effect of Biejia Decoction Pill on the mRNA expression, related proteins, and phosphorylation of the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. A one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test or the Dunnett’s T3 test were used for further comparison between two groups. ResultsCompared with the blank serum group, the Biejia Decoction Pill groups had significant reductions in OD value, migration rate during different periods of time, glycolytic rate-limiting enzymes (hexokinase, phosphofructokinase, pyruvate kinase), and glycolytic metabolites (pyruvate, lactic acid, ATP) (all P<0.05). RT-qPCR results showed that compared with the blank serum group, the high-, middle-, and low-dose Biejia Decoction Pill groups had a significant reduction in the mRNA expression level of mTOR, and the high- and low-dose Biejia Decoction Pill groups had a significant reduction in the mRNA expression level of AKT (all P<0.05). Western blot results showed that compared with the blank serum group, the high-, middle-, and low-dose Biejia Decoction Pill groups had significant reductions in the expression levels of mTOR-related proteins and phosphorylated proteins, and the high- and middle-dose Biejia Decoction Pill groups had significant reductions in the expression levels of AKT-related proteins and phosphorylated proteins (all P<0.05). ConclusionThis study preliminarily verifies that the serum containing Bijia Decoction Pill can inhibit the aerobic glycolysis of human hepatoma Huh7 cells, thereby inhibiting their proliferation and migration, possibly by inhibiting the expression of the proteins related to the AKT/mTOR signaling pathway.
2.Rapid characterization and identification of non-volatile components in Rhododendron tomentosum by UHPLC-Q-TOF-MS method.
Su-Ping XIAO ; Long-Mei LI ; Bin XIE ; Hong LIANG ; Qiong YIN ; Jian-Hui LI ; Jie DU ; Ji-Yong WANG ; Run-Huai ZHAO ; Yan-Qin XU ; Yun-Bo SUN ; Zong-Yuan LU ; Peng-Fei TU
China Journal of Chinese Materia Medica 2025;50(11):3054-3069
This study aimed to characterize and identify the non-volatile components in aqueous and ethanolic extracts of the stems and leaves of Rhododendron tomentosum by using sensitive and efficient ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS) combined with a self-built information database. By comparing with reference compounds, analyzing fragment ion information, searching relevant literature, and using a self-built information database, 118 compounds were identified from the aqueous and ethanolic extracts of R. tomentosum, including 35 flavonoid glycosides, 15 phenolic glycosides, 12 flavonoids, 7 phenolic acids, 7 phenylethanol glycosides, 6 tannins, 6 phospholipids, 5 coumarins, 5 monoterpene glycosides, 6 triterpenes, 3 fatty acids, and 11 other types of compounds. Among them, 102 compounds were reported in R. tomentosum for the first time, and 36 compounds were identified by comparing them with reference compounds. The chemical components in the ethanolic and aqueous extracts of R. tomentosum leaves and stems showed slight differences, with 84 common chemical components accounting for 71.2% of the total 118 compounds. This study systematically characterized and identified the non-volatile chemical components in the ethanolic and aqueous extracts of R. tomentosum for the first time. The findings provide a reference for active ingredient research, quality control, and product development of R. tomentosum.
Rhododendron/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Plant Leaves/chemistry*
3.Inhibiting neddylation: A new strategy for tumor therapy.
Jian SUN ; Cui LIU ; Changhui LANG ; Jing WANG ; Qingxiang LI ; Chang PENG ; Zuochen DU ; Yan CHEN ; Pei HUANG
Journal of Pharmaceutical Analysis 2025;15(5):101140-101140
Neddylation is a crucial posttranslational modification that involves the attachment of neural precursor cell-expressed developmentally downregulated protein 8 (NEDD8) to a lysine residue in the substrate via the sequential actions of the E1 NEDD8-activating enzyme (NAE) (E1), E2 NEDD8-conjugating enzyme (E2), and E3 NEDD8-ligase (E3). The most extensively studied substrates of neddylation are members of the cullin family, which act as scaffold components for cullin ring E3 ubiquitin ligases (CRLs). Since cullin neddylation activates CRLs, which are frequently overactive in tumors, inhibiting neddylation has emerged as a promising strategy for developing novel antitumor therapies. This review explores the antitumor effects of inhibiting neddylation that leads to the inactivation of CRLs and provides a summary of known inhibitors that target protein-protein interactions (PPIs) within the neddylation enzymatic cascade.
4.Antithrombotic effect in zebrafish of a fibrinolytic protein EPF3 from Dilong (Pheretima vulgaris Chen) and its transport mechanism in Caco-2 monolayer through cell bypass pathway.
Wan-Ling ZHONG ; Jian-Qiong YANG ; Hai LIU ; Ya-Li WU ; Hui-Juan SHEN ; Peng-Yue LI ; Shou-Ying DU
Journal of Integrative Medicine 2025;23(4):415-428
OBJECTIVE:
EPF3 is a fibrinolysin monomer isolated and purified from Pheretima vulgaris Chen, an earthworm used in traditional Chinese medicine as Dilong for treating blood stasis syndrome. Its composition, anticoagulant and fibrinolytic activities, and relevant mechanisms have been confirmed through in vitro experiments. However, whether it has antithrombotic effects in vivo and can be absorbed by the gastrointestinal tract is unknown. This study evaluates the antithrombotic effect in zebrafish and investigates the gastrointestinal stability and intestinal absorption mechanism of this protein in vitro.
METHODS:
The antithrombotic effect of EPF3 in vivo was verified using the zebrafish thrombus model induced by arachidonic acid and FeCl3. Then, the protein bands of EPF3 incubated with simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and homogenate of Caco-2 cells (HC2C) were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to evaluate its gastrointestinal stability. Finally, the transport behavior and absorption mechanism of EPF3 were studied using Caco-2 cell monolayer.
RESULTS:
EPF3 could significantly enhance the returned blood volume and blood flow velocity in zebrafish with platelet aggregation thrombus induced by arachidonic acid. It could also prolong the formation time of tail artery thrombus and increase the blood flow velocity in zebrafish with vessel injury thrombus induced by FeCl3. EPF3 was stable in SIF and HC2C and unstable in SGF. The permeability of EPF3 in Caco-2 monolayer was time-dependent and concentration-dependent. The efflux ratio was less than 1.2 during transport, and the transport behavior was not affected by inhibitors. EPF3 could reversibly reduce the expression of tight junction-related proteins, including zonula occludens-1, occludin, and claudin-1 in Caco-2 cells.
CONCLUSION
EPF3 could play a thrombolytic and antithrombotic role in zebrafish. It could be transported and absorbed into the intestine through cellular bypass pathway by opening the intestinal epithelium tight junction. This study provides a scientific explanation for the antithrombotic effect of earthworm and provides a basis for the feasibility of subsequent development of EPF3 as an antithrombotic enteric-soluble preparation. Please cite this article as: Zhong WL, Yang JQ, Liu H, Wu YL, Shen HJ, Li PY, Du SY. Antithrombotic effect in zebrafish of a fibrinolytic protein EPF3 from Dilong (Pheretima vulgaris Chen) and its transport mechanism in Caco-2 monolayer through cell bypass pathway. J Integr Med. 2025; 23(4): 415-428.
Animals
;
Zebrafish
;
Humans
;
Caco-2 Cells
;
Fibrinolytic Agents/pharmacology*
;
Thrombosis/drug therapy*
;
Intestinal Absorption
5.Role of Hedgehog signaling pathway in muscle bone symbiosis in osteo-sarcopenia
Yan-Dong LIU ; Qiang DENG ; Zhong-Feng LI ; Ran-Dong PENG ; Yu-Rong WANG ; Jia-Ming LI ; Ping-Yi MA ; Jian-Qiang DU
The Chinese Journal of Clinical Pharmacology 2024;40(16):2433-2437
This article elaborates on the complex cross-talk and close relationship between muscles and bones involved in this disease,as well as its pathogenesis.It also summarizes that the difficulty of its treatment lies in the need to simultaneously consider both muscles and bones.And elaborated on the key role of the Hedgehog signaling pathway in embryonic development,tissue morphology establishment,and human tissue regeneration and repair.Investigated the remodeling effect of the Hedgehog signaling pathway on skeletal muscle from three aspects:Proliferation and differentiation of muscle stem cells,precursor cell and muscle fiber generation,inhibition of inflammation,and regulation of immunity;this article elucidates the role of the Hedgehog signaling pathway in bone reconstruction from two aspects.
6.Expert Consensus of Multidisciplinary Diagnosis and Treatment for Paroxysmal Nocturnal Hemoglobinuria(2024)
Miao CHEN ; Chen YANG ; Ziwei LIU ; Wei CAO ; Bo ZHANG ; Xin LIU ; Jingnan LI ; Wei LIU ; Jie PAN ; Jian WANG ; Yuehong ZHENG ; Yuexin CHEN ; Fangda LI ; Shunda DU ; Cong NING ; Limeng CHEN ; Cai YUE ; Jun NI ; Min PENG ; Xiaoxiao GUO ; Tao WANG ; Hongjun LI ; Rongrong LI ; Tong WU ; Bing HAN ; Shuyang ZHANG ; MULTIDISCIPLINE COLLABORATION GROUP ON RARE DISEASE AT PEKING UNION MEDICAL COLLEGE HOSPITAL
Medical Journal of Peking Union Medical College Hospital 2024;15(5):1011-1028
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal hematopoietic stem cell disease caused by abnormal expression of glycosylphosphatidylinositol (GPI) on the cell membrane due to mutations in the phosphatidylinositol glycan class A(PIGA) gene. It is commonly characterized by intravascular hemolysis, repeated thrombosis, and bone marrow failure, as well as multiple systemic involvement symptoms such as renal dysfunction, pulmonary hypertension, swallowing difficulties, chest pain, abdominal pain, and erectile dysfunction. Due to the rarity of PNH and its strong heterogeneity in clinical manifestations, multidisciplinary collaboration is often required for diagnosis and treatment. Peking Union Medical College Hospital, relying on the rare disease diagnosis and treatment platform, has invited multidisciplinary clinical experts to form a unified opinion on the diagnosis and treatment of PNH, and formulated the
7.Influencing factors and the Nomogram model to predict early hematoma expansion of intracranial hemorrhage
Fa WU ; Yu-Lin YANG ; Ting-Ting WU ; Rui JIANG ; Jie WU ; Peng WANG ; Fei-Zhou DU ; Hong-Mei YU ; Jian-Hao LI
Medical Journal of Chinese People's Liberation Army 2024;49(5):504-510
Objective To investigate factors influencing the occurrence of early haematoma expansion(HE)in patients with spontaneous intracerebral hemorrhage(sICH),to develop a predictive model and evaluate its predictive efficacy.Methods A retrospective cohort of 238 patients with sICH,admitted to General Hospital of Western Theater Command between January 2017 and December 2022,was analyzed.Patients were categorized into two groups based on the criteria of HE exceeding 33%in relative volume or 6 ml in absolute volume:HE group(n=62)and non-haematoma expansion(NHE)group(n=176).Clinical characteristics,laboratory findings,Non-contrast Computed Tomography(NCCT)imaging,and Glasgow Coma Scale(GCS)scores were compared between the two groups.Multifactorial logistic regression analysis was employed to identify risk factors for HE and to model the probability of its occurrence.The R language rms package was utilized to construct a nomogram model for predicting HE in sICH patients,Additionally,the related clinical,NCCT,and GCS models were constructed.The predictive efficacy of each model for HE in sICH patients was evaluated using area under Receive Operative Characteristic(ROC)curve(AUC),and the clinical application value of each model was assessed using accuracy,sensitivity,specificity,and Jordon's index.The Delong test was applied to analyze differences in the predictive values of the models.Results Significant differences in satellite sign,vortex sign,and history of anticoagulant treatment were observed between two groups(P<0.05).Multifactorial logistic regression analysis revealed independent risk factors for HE in sICH patients,including the first CT examination time,homogeneity,history of anticoagulant medication,volume,maximal diameter,hypodensity sign,island sign,satellite sign,and vortex sign(P<0.05).The AUCs for the constructed clinical model,NCCT model,GCS model and nomogram model in predicting the occurrence of HE in sICH patients were 0.672,0.706,0.518 and 0.754,respectively.The nomogram model demonstrated higher accuracy,sensitivity,Jordon's index and AUC compared with those in the clinical and NCTT models.Conclusions The first CT examination time,homogeneity,history of anticoagulant treatment,volume,maximum diameter,hypodensity sign,island sign,satellite sign,and vortex sign are independent predictors of early HE in sICH patients.The nomogram model,constructed with the above parameters,demonstrated high predictive efficacy for HE and holds potential for clinical application.
8.Ruxolitinib combined with venetoclax and azacitidine in the treatment of refractory T-ALL patients with JAK1, JAK3, and STAT5B gene mutations: a case report and literature review
Peipei XU ; Tong ZHOU ; Yueyi XU ; Miaoxin PENG ; Ying DU ; Ting XIE ; Yonggong YANG ; Jian OUYANG ; Bing CHEN
Chinese Journal of Hematology 2024;45(9):872-875
Refractory acute T-lymphoblastic leukemia (T-ALL), which is characterized by a low sensitivity to conventional induction therapy and poor prognosis, poses significant challenges during treatment. This study reported a case of refractory T-ALL patient with mutations in the JAK1, JAK3, and STAT5B genes from Nanjing University’s Gulou Hospital. Following an unsuccessful course of standard VDLP regimen chemotherapy, the treatment was modified to include ruxolitinib in combination with venetoclax and azacitidine. Subsequent to this therapy, the patient achieved bone marrow minimal residual disease (MRD) negativity. Notably, pleural effusion and mediastinal mass significantly improved the post-chest cavity infusion of dexamethasone combined with etoposide at the same stage. The patient also underwent allogeneic hematopoietic stem cell transplantation upon achieving bone marrow remission and was followed up until January 2024. Ruxolitinib combined with venetoclax and azacytidine has shown promising efficacy and safety in treating refractory T-ALL harboring the JAK1, JAK3, and STAT5B mutations, providing a novel therapeutic approach for such patients.
9.An overview of research based on intestinal microecology to explore musculoskeletal attenuation diseases
Yan-Dong LIU ; Qiang DENG ; Ran-Dong PENG ; Yu-Rong WANG ; Tie-Feng GUO ; Qian-Qian XIANG ; Jian-Qiang DU ; Ping-Yi MA
Parenteral & Enteral Nutrition 2023;30(5):309-314
Sarcopenia,osteoporosis and osteosarcoporosis,which belong to the same category of musculoskeletal unit disease,seriously impair the homeostasis of the musculoskeletal system in the aging process of the human body.In recent years,researchers have applied various emerging technologies to conduct multi-disciplinary,multi-level and multi-dimensional research on musculoskeletal decay disease,and have come to realized that the disease involves complex biochemical and mechanical crosstalk,and the intestinal microecology has also aroused great interest in this crosstalk because of its profound impact on musculoskeletal health.In view of this,this paper takes the close relationship between intestinal microecology and musculoskeletal decay disease as the starting point,and under the guidance of the overall concept,we deeply analyzes the mechanism and regulatory information behind this relationship,and on this basis,we excavates the potential therapeutic targets for musculoskeletal decay disease,so that we can provide new ideas and strategies for the management of the disease in the context of the musculoskeletal subunit.
10.Lipopolysaccharides protect mesenchymal stem cell against cardiac ischemia-reperfusion injury by HMGB1/STAT3 signaling.
Jing-Yi WEN ; Hui-Xi PENG ; Dan WANG ; Zhi-Min WEN ; Yu-Tong LIU ; Jian QU ; Hong-Xuan CUI ; Yu-Ying WANG ; Yan-Lin DU ; Ting WANG ; Cong GENG ; Bing XU
Journal of Geriatric Cardiology 2023;20(11):801-812
BACKGROUND:
Myocardial ischemia-reperfusion (I/R) is a serious and irreversible injury. Bone marrow-derived mesenchymal stem cells (MSCs) is considered to be a potential therapy for I/R injury due to the paracrine effects. High-mobility group box 1 (HMGB1) is a novel mediator in MSC and regulates the response of inflammation injury. Signal Transduction and Transcription Activator 3 (STAT3) is a critical transcription factor and important for release of paracrine factors. However, the relationship between HMGB1 and STAT3 in paracrine effect of MSC remains unknown.
METHODS:
In vitro, hypoxia/reoxygenation injury model was established by AnaeroPack System and examined by Annexin V flow cytometry, CCK8 assay and morphology observation. Detection of apoptotic proteins and protein expression of HMGB1 and STAT3 by Western blot.
RESULTS:
The conditioned medium of MSCs with or without LPS pretreatment was cocultured with H9C2 cells for 24 h before hypoxia treatment and MSC showed obvious cardiomyocytes protect role, as evidence by decreased apoptosis rate and improved cells viability, and LPS pretreated MSC exhibited better protect role than untreated MSC. However, such effect was abolished in HMGB1 deficiency group, silencing HMGB1 decreased the secretion of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), insulin growth factor (IGF), cell viability, and the expression of STAT3. Furthermore, STAT3 silence attenuated the protective effect of LPS in MSC.
CONCLUSIONS
These findings suggested that LPS improved MSC-mediated cardiomyocytes protection by HMGB1/STAT3 signaling.

Result Analysis
Print
Save
E-mail