1.Mechanism of Zuogui Jiangtang Jieyu Prescription Against Damage to Hippocampal Synaptic Microenvironment via Suppressing GluR2/Parkin Signal-mediated Mitophagy in Rats with Diabetes-related Depression
Jian LIU ; Lin LIU ; Xiaoyuan LIN ; Wei LI ; Yuhong WANG ; Hui YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):104-112
ObjectiveTo reveal the mechanism of Zuogui Jiangtang Jieyu prescription against damage to hippocampal synaptic microenvironment via suppressing glutamate receptor 2 (GluR2)/Parkin signal-mediated mitophagy in rats with diabetes-related depression (DD). MethodsEighty male SD rats underwent adaptive feeding for 5 days before the study. Ten rats were randomly assigned to the normal group. The model of DD rats was established with the rest by 2-week high-fat diet + streptozotocin (STZ) tail intravenous injection + 28 days of chronic unpredictable mild stress (CUMS) combined with isolation. The rats were randomly divided into a normal group, a model group, a GluR2 blocker group (5 μg·kg-1), a GluR2 agonist group (10 μg·kg-1), a metformin + fluoxetine group (0.18 g·kg-1 metformin + 1.8 mg·kg-1 fluoxetine), and high- and low-dose Zuogui Jiangtang Jieyu prescription groups (20.52 and 10.26 g·kg-1, respectively). The rats in the GluR2 blocker group and the GluR2 agonist group were continuously injected with CNQX and Cl-HIBO in the dentate gyrus of the hippocampus once a week starting from stress modeling, respectively, while the metformin + fluoxetine group and the high- and low-dose Zuogui Jiangtang Jieyu prescription groups were continuously given intragastric administration for 28 d at the same time of stress modeling. Depression-like behavior was evaluated by open field and forced swimming experiments. The levels of serum insulin and adenosine triphosphate (ATP) in hippocampus were detected by biochemical analysis. The levels of 5-hydroxytryptamine (5-HT) and dopamine (DA) in hippocampus were detected by enzyme-linked immunosorbent assay (ELISA). The autophagosomes of hippocampal neurons were observed by transmission electron microscopy. The morphology and structure of dendrites and spines of hippocampal neurons were evaluated by Golgi staining. Western blot detected the expression levels of GluR2 and Parkin proteins in hippocampus. The expression levels of GluR2, Parkin, regulating synaptic membrane exocytosis protein 3 (RIMS3), and postsynaptic density protein 95 (PSD95) in the dentate gyrus of the hippocampus were detected by immunofluorescence. ResultsCompared with the normal group, the model group exhibited reduced total activity distance in the open field and increased immobility time in forced swimming (P<0.01), lowered levels of serum insulin and ATP, 5-HT, and DA in hippocampus (P<0.01), increased autophagosomes of hippocampal neurons, significantly damaged morphology and structure of dendrites and spines of hippocampal neurons, decreased expression levels of GluR2, RIMS3, and PSD95 in hippocampus, and an increased Parkin expression level (P<0.05, P<0.01). Compared with the model group, the GluR2 blocker group and the GluR2 agonist group showed aggravation and alleviation of the above abnormal changes, respectively (P<0.05, P<0.01). The above depression-like behavior was significantly improved in the high- and low-dose Zuogui Jiangtang Jieyu prescription groups to different degrees. Specifically, the two groups saw elevated levels of serum insulin and ATP, 5-HT, and DA in hippocampus (P<0.05, P<0.01), restrained increase in autophagosomes and damage to morphology and structure of dendrites and spines of hippocampal neurons, up-regulated protein expression levels of GluR2, RIMS3, and PSD95, and down-regulated Parkin expression level (P<0.05, P<0.01). ConclusionZuogui Jiangtong Jieyu prescription can ameliorate the mitophagy-mediated damage to hippocampal synaptic microenvironment in DD rats, the mechanism of which might be related to the regulation of GluR2/Parkin signaling pathway.
2.Incremental effectiveness of two-dose of mumps-containing vaccine in chidren
Chinese Journal of School Health 2025;46(6):883-887
Objective:
To evaluate the incremental vaccine effectiveness (VE) of two dose of the mumps containing vaccine (MuCV) in chidren, so as to provide a basis for optimizing mumps immunization strategies.
Methods:
A 1∶2 frequency matched case-control study was conducted by using reported mumps cases in childcare centers or schools from Lu an, Hefei, Ma anshan and Huainan cities of Anhui Province from September 1, 2023 to June 30, 2024, as a case group(383 cases). And healthy children in the same classroom were selected as a control group(766 cases). The MuCV immunization histories of participants were collected to estimate the incremental VE of the second dose of MuCV against mumps. Group comparisons were performed using the Chi square test or t-test. For matched case-control pairs, the Cox regression model was employed to calculate the odds ratio (OR) with 95% confidence interval (CI) for two dose MuCV vaccination and to estimate the incremental vaccine effectiveness (VE).
Results:
There were no statistically significant differences between the case and control groups regarding gender, age, dosage of MuCV vaccination and the time interval since the last dose vaccination( χ 2/t=0.05, 0.20, 0.94, -0.02, P >0.05). The proportions of the case and control groups vaccinated with two doses of MuCV were 26.63% and 29.37%, respectively, and the overall incremental VE of the second dose of MuCV was 40.73% (95% CI=3.03%-63.77%, P <0.05). Subgroup analyses revealed that the incremental VE for children with a period of ≥1 year between the two doses of MuCV was 54.13% (95% CI=1.90%-78.56%, P <0.05), while for children with a period of <1 year, it was 30.63% (95% CI=-28.59%-62.58%, P >0.05). The incremental VE of the second dose of MuCV was 30.36% (95% CI=-25.95%-61.50%, P >0.05) in kindergarten children and 66.73% (95% CI=14.92%-86.99%, P <0.05) in elementary and secondary school students. The incremental VE was 28.78% (95% CI=-27.46%-60.21%, P >0.05) within five years of the last dose of MuCV vaccination and 66.07% (95% CI=-41.56%-91.87%, P >0.05) for vaccinations administered beyond five years.
Conclusions
The second dose of MuCV may offer additional protection for children; however, extending the interval between two dose of MuCV (<1 year) has shown limited incremental protective effects. Therefore, it is crucial to consider optimizing current immunization strategies for mumps.
3.Effects of curcumol on iron death and epithelial-mesenchymal transition in hepatic stellate cells
Lei WANG ; Jin-Biao HUANG ; Yan-Qing HUANG ; Ze-Yu WANG ; Jia-Hui WANG ; Yang ZHENG ; Wei-Sheng LUO ; Tie-Jian ZHAO
The Chinese Journal of Clinical Pharmacology 2024;40(4):539-543
Objective To elucidate the effect of curcumol on hepatic stellate cell iron death and epithelial-mesenchymal transition(EMT),and to investigate the molecular mechanism of its anti-liver fibrosis effect.Methods A model of hepatic stellate cell activation was constructed using normal cultured hepatic stellate cells in vitro,and the cells were divided into blank group and experimental-L,-M,-H groups.The blank group was given DMEM complete culture solution for normal culture;the experimental-L,-M,-H groups were given DMEM complete culture solution containing 12.5,25.0 and 50.0 mg·L-1 curcumol for 48 h of intervention.The effects of curcumol on the proliferation of hepatic stellate cells was observed by CCK-8.The expression levels of glutathione peroxidase 4(GPX4)and solute carrier family 7 member 11(SLC7A11)were detected by Western blot.The expression levels of E-cadherin and N-cadherin were detected by immunofluorescence.Results The cell proliferation rates of the experimental-M,-H groups and blank group were(68.97±5.61)%,(61.91±4.40)%and(118.07±10.01)%;the relative expression levels of GPX4 were 0.37±0.04,0.28±0.03 and 0.58±0.05;the relative expression levels of SLC7A11 were 0.38±0.04,0.28±0.03 and 0.60±0.05;E-cadherin levels were 6.76±1.09,9.57±1.73 and 2.05±0.72;N-cadherin levels were 5.66±0.66,3.44±0.78 and 10.37±0.66.The differences of above indicators were statistically significant between the blank group and the experimental-M,-H groups(P<0.05,P<0.01).Conclusion Curcumol promotes iron death in hepatic stellate cells,thereby inhibiting hepatic stellate cell EMT,which may be its molecular mechanism to prevent and treat liver fibrosis.
4.Advances in DNA origami intelligent drug delivery systems
Zeng-lin YIN ; Xi-wei WANG ; Jin-jing CHE ; Nan LIU ; Hui ZHANG ; Zeng-ming WANG ; Jian-chun LI ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2024;59(10):2741-2750
DNA origami is a powerful technique for generating nanostructures with dynamic properties and intelligent controllability. The precise geometric shapes, high programmability, and excellent biocompatibility make DNA origami nanostructures an emerging drug delivery vehicle. The shape, size of the carrier material, as well as the loading and release of drugs are important factors affecting the bioavailability of drugs. This paper focuses on the controllable design of DNA origami nanostructures, efficient drug loading, and intelligent drug release. It summarizes the cutting-edge applications of DNA origami technology in biomedicine, and discusses areas where researchers can contribute to further advancing the clinical application of DNA origami carriers.
5.Investigation on thermodynamics and kinetics of puerarin sodium chelate
Wei JIANG ; Jun-xiao ZHU ; Hui CHEN ; Jing-wen ZHANG ; Jian-jun ZHANG ; Yuan GAO ; Shuai QIAN ; Yuan-feng WEI
Acta Pharmaceutica Sinica 2024;59(9):2648-2658
Tablets represent the most widely used oral solid dosage form in the pharmaceutical industry. Puerarin monohydrate (PUEM), a solid form of the natural antihypertensive drug puerarin, is commercially available. However, the low solubility of PUEM poses a significant challenge for the development of its tablet dosage form. In this study, we successfully prepared the sodium chelates of puerarin (PUE-Na·7H2O) using reactive crystallization techniques. The crystal structure of PUE-Na·7H2O was analyzed using single crystal technology, which revealed the structural characteristics of its metal chelate. Our thermodynamic studies demonstrated that the formation of PUE-Na·7H2O involved the simultaneous deprotonation of PUE and the chelation of PUE- and Na+. This reaction process was spontaneous and exothermic (Δ
6.Interactions between gut microbiota-producing enzymes and natural drugs affect disease progression
Zhi-yu WANG ; Hao-ran SHEN ; Yan-xing HAN ; Jian-dong JIANG ; Wei JIANG ; Hui-hui GUO
Acta Pharmaceutica Sinica 2024;59(8):2183-2191
Naturally derived metabolites are valuable resources for drug research and development, and play an important role in the treatment of diseases. As the "second genome" of the body, gut microbiota is rich in metabolic enzymes, which interacts with external substances such as drugs, thus affecting the progression of diseases. This article summarizes the interaction between gut microbiota-producing enzymes and natural medicines, and focuses on the impact of this interaction on disease progression, hoping to provide new ideas for the development and pharmacological mechanism of natural medicines.
7.Two new flavonoid glycosides from Diphylleia sinensi
Hao-jie WANG ; Chen ZHAO ; Yan-jun SUN ; Jian-hong GONG ; Hong-yun BAI ; Hui CHEN ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2024;59(3):673-677
Five flavonoid glycosides were isolated from the methanol and ethyl acetate fractions of the ethanol extract of
8.Two new dalbergiphenols from Zhuang medicine Dalbergia rimosa Roxb
Cheng-sheng LU ; Wei-yu WANG ; Min ZHU ; Si-si QIN ; Zhao-hui LI ; Chen-yan LIANG ; Xu FENG ; Jian-hua WEI
Acta Pharmaceutica Sinica 2024;59(2):418-423
Twelve compounds were isolated from the ethyl acetate fraction of the 80% aqueous ethanol extract of the roots and stems of
9.Effects of Zuogui Jiangtang Jieyu Formula (左归降糖解郁方) on Dendritic Spines of Hippocampal Dentate Gyrus and Wnt5a/RhoA Signaling Pathway in Diabetic with Depression Model Rats
Hui YANG ; Wei LI ; Shihui LEI ; Fan JIANG ; Jian LIU ; Jinxi WANG ; Yi YANG ; Yuhong WANG
Journal of Traditional Chinese Medicine 2024;65(5):520-528
ObjectiveTo explore the potential mechanism of Zuogui Jiangtang Jieyu Formula (左归降糖解郁方, ZJJF) for diabetic rats with depression. MethodsSixty rats were randomly divided into normal group, model group, wingless MMTV integration site family member 5a (Wnt5a) agonist group, ZJJF group, and ZJJF plus Wnt5a inhibitor group, with 12 rats in each group. Except for the normal group, the rats were fed with high-fat chow, streptozotocin injection, and chronic mild unpredictable stress combination, to establish model of diabetes mellitus complicated with depression. After successful modelling, rats in the Wnt5a agonist group were given bilateral hippocampal stereotactic injections of Wnt5a agonist Foxy-5 with 5 μl each for 7 consecutive days; rats in ZJJF group were given 20.52 g/(kg·d) of ZJJF by gavage; rats in ZJJF plus Wnt5a inhibitor group were given the drug by gavage, and bilateral hippocampal stereotactic injections of Wnt5a inhibitors Box5, with the same dosage and injection method as above. The normal group and model group were given 10 ml/(kg·d) of normal saline by gavage. All groups were gavaged for 4 consecutive weeks. At the end of the intervention, the depression-like behaviour of rats was evaluated using the forced swimming experiment (immobility time) and the absent field experiment (number of activities); the blood glucose and insulin levels of rats were measured and the insulin resistance index was calculated; the dendritic morphology of dentate gyrus neurons in the hippocampus was observed using Golgi staining; the level of dentate gyrus neuron proliferation was measured using 5-bromodeoxyuracil nucleoside (Brdu) injection and immunofluorescence; RT-qPCR and Western blot were used to detect the mRNA and protein expression of Wnt5a, Ras homologue genomic member A (RhoA) and Rho homologue-associated coiled-coil protein kinase 1 (ROCK1) in the dentate gyrus. ResultsCompared with the normal group, rats in the model group had significantly higher blood glucose, insulin and insulin resistance indices, longer immobility time, fewer activities, lower Brdu integral optical density values and Wnt5a, RhoA, ROCK1 protein and mRNA expression in the dentate gyrus of the hippocampus (P<0.05 or P< 0.01); the dendritic branches of rat hippocampal dentate gyrus neurons could be seen to be significantly reduced or broken, and their length shortened. Compared with the model group, the blood glucose, insulin and insulin resistance indices of rats in ZJJF group and the ZJJF plus Wnt5a inhibitor group significantly reduced (P<0.05 or P<0.01); the immobility time of rats in the Wnt5a agonist group and ZJJF group was significantly shortened, the number of activities increased, the Brdu integral optical density values elevated, and the Wnt5a, RhoA, ROCK1 protein and mRNA expression elevated (P<0.05 or P<0.01), and the number of dendritic branches of hippocampal dentate gyrus neurons significantly increased, the length lengthened, and the complexity of dendrites increased. Compared with the Wnt5a agonist group, rats in the ZJJF group showed significant decrease in blood glucose, insulin and insulin resistance indices, prolongation of immobilisation time, reduction in the number of activities, and reduction in the Brdu integral optical density value; except for the Wnt5a mRNA in ZJJF group, Wnt5a, RhoA, ROCK1 protein and mRNA expression reduced in both ZJJF group and ZJJF plus Wnt5a inhibitor group (P<0.05 or P<0.01). Compared with ZJJF group, Wnt5a, RhoA, ROCK1 protein and mRNA expression were reduced in ZJJF plus Wnt5a inhibitor group (P<0.05 or P<0.01). ConclusionZJJF can improve hyperglycemia and depressive-like behaviours in rat models of diabetes with depression, and its antidepressant effects may be related to the activation of hippocampal Wnt5a/RhoA signaling and promotion of dentate gyrus neuron dendritic growth.
10.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.


Result Analysis
Print
Save
E-mail