1.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Study on the machanism of Huannao Yicong Deoction targeting HAMP to regulate iron metabolism and improve cognitive impairment in AD model mice
Ning-Ning SUN ; Xiao-Ping HE ; Shan LIU ; Yan ZHAO ; Jian-Min ZHONG ; Ya-Xuan HAO ; Ye-Hua ZHANG ; Xian-Hui DONG
Chinese Pharmacological Bulletin 2024;40(7):1240-1248
Aim To explore the effects of Huannao Yicong decoction(HYD)on the learning and memory ability and brain iron metabolism in APP/PS1 mice and the correlation of HAMP knockout mice and APP/PS1 double transgenic model mice.Methods The ex-periment was divided into five groups,namely,HAMP-/-group(6-month HAMP gene knockout mice),APP/PS1 group(6-month APP/PS1-double-transgenic mice),HAMP-/-+HYD,APP/PS1+HYD,and negative control group(6-month C57BL/6J mice),with six mice in each group.The dose was ad-ministered(13.68 g·kg-1 weight),and the other groups received distilled water for gavage once a day for two months.After the administration of the drug,the mice in each group were tested for learning and memory in the Morris water maze;Biochemical detec-tion was performed to detect iron ion content in each mouse brain;Western blot and RT-qPCR were carried out to analyze hippocampal transferrin(TF),transfer-rin receptor1(TFR1),membrane iron transporter1(FPN1)divalent metal ion transporter 1(DMT1)and β-amyloid protein(Aβ)protein and mRNA expression levels in each group.Results Compared with the normal group,both HAMP-/-mice and APP/PS1 mice had reduced the learning and memory capacity,in-creased iron content in brain tissue,Aβ protein ex-pression increased in hippocampus of HAMP-/-group and APP/PS1 group mice(P<0.01),the protein and mRNA expression of TF,TFR1 and DMT1 increased in hippocampal tissues of HAMP-/-and APP/PS1 groups(P<0.01),and the FPN1 protein and mRNA expres-sion decreased(P<0.01).Compared with the HAMP-and APP/PS1 groups,respectively,HAMP-/-+HYD group and APP/PS1+HYD group had improved learning and memory ability,decreased iron content,decreased Aβ protein expression(P<0.01),decreased TF,TFR1,DMT1 protein and mR-NA expression(P<0.01),and increased expression of FPN1 protein and mRNA(P<0.01).Conclusions There is some association between HAMP-/-mice and APP/PS1 mice,HYD can improve the learning and memory ability of HAMP-/-and APP/PS1 mice and reduce the Aβ deposition.The mechanism may be related to the regulation of TF,TFR1,DMT1,FPN1 expression and improving brain iron overload.
7.Effects of CircNRIP1 on proliferation,apoptosis and chemotherapy resistance of breast cancer cells through regulating miR-136-5p/RAC1 axis
Lu DONG ; Ming LI ; Jian-Li XU ; Yan-Hua XU
Journal of Regional Anatomy and Operative Surgery 2024;33(5):383-387
Objective To investigate the effects of CircNRIP1 on the proliferation,apoptosis and chemotherapy resistance of breast cancer cells by regulating miR-136-5p/Ras related C3 botulinum toxin substrate 1(RAC1)axis.Methods The mRNA expression of CircNRIP1,miR-136-5p and RAC1 in normal breast epithelial cells of MCF10A,breast cancer cells of MCF-7 and paclitaxel(PTX)resistant cell line of MCF-7/PTX were detected by qRT-PCR.MCF-7/PTX cells were divided into the CK group(normal culture),the si-NC group(transfected with si-NC),the si-CircNRIP1 group(transfected with si-CircNRIP1),the si-CircNRIP1+inhibitor NC group(transfected with si-CircNRIP1 and inhibitor NC),and the si-CircNRIP1+miR-136-5p inhibitor group(transfected with si-CircNRIP1 and miR-136-5p inhibitor).The cell proliferation rate of each group was detected by CCK-8 method;the cell apoptosis of each group was detected by flow cytometry;the expression of CircNRIP1,miR-136-5p,and RAC1 mRNA of each group were detected by qRT-PCR;the expression of Ki-67,Bax,Bcl-2,and RAC1 proteins of each group were detected by Western blot;the relationships between miR-136-5p and CircNRIP1 and RAC1 were verified by dual luciferase experiment.Results Compared with the normal breast epithelial cells of MCF10A,the expression of CircNRIP1 and RAC1 in the MCF-7 and MCF-7/PTX cells were increased(P<0.05),the expression of miR-136-5p was decreased(P<0.05);compared with the MCF-7 cells,the expression of CircNRIP1 and RAC1 in the MCF-7/PTX cells were increased(P<0.05),while the expression of miR-136-5p was decreased(P<0.05).Compared with the CK group and the si-NC group,the cell proliferation rate,the expression of CircNRIP1 and RAC1 mRNA,and the protein expression of Ki-67,Bcl-2,and RAC1 in the si-CircNRIP1 group were decreased(P<0.05),the apoptosis rate,and the expression of miR-136-5p and Bax were increased(P<0.05).Knocking down the expression of miR-136-5p could weaken the inhibitory effect of silencing CircNRIP1 on MCF-7/PTX cells(P<0.05).The dual luciferase experiment verified that miR-136-5p had targeting relationships with CircNRIP1 and RAC1.Conclusion Silencing CircNRIP1 expression can inhibit the malignant biological behavior of MCF-7/PTX cells,and reduce their PTX resistance,which may be related to regulating the miR-136-5p/RAC1 axis.
8.Surveillance of antifungal resistance in clinical isolates of Candida spp.in East China Invasive Fungal Infection Group from 2018 to 2022
Dongjiang WANG ; Wenjuan WU ; Jian GUO ; Min ZHANG ; Huiping LIN ; Feifei WAN ; Xiaobo MA ; Yueting LI ; Jia LI ; Huiqiong JIA ; Lingbing ZENG ; Xiuhai LU ; Yan JIN ; Jinfeng CAI ; Wei LI ; Zhimin BAI ; Yongqin WU ; Hui DING ; Zhongxian LIAO ; Gen LI ; Hui ZHANG ; Hongwei MENG ; Changzi DENG ; Feng CHEN ; Na JIANG ; Jie QIN ; Guoping DONG ; Jinghua ZHANG ; Wei XI ; Haomin ZHANG ; Rong TANG ; Li LI ; Suzhen WANG ; Fen PAN ; Jing GAO ; Lu JIANG ; Hua FANG ; Zhilan LI ; Yiqun YUAN ; Guoqing WANG ; Yuanxia WANG ; Liping WANG
Chinese Journal of Infection and Chemotherapy 2024;24(4):402-409
Objective To monitor the antifungal resistance of clinical isolates of Candida spp.in the East China region.Methods MALDI-TOF MS or molecular methods were used to re-identify the strains collected from January 2018 to December 2022.Antifungal susceptibility testing was performed using the broth microdilution method.The susceptibility test results were interpreted according to the breakpoints of 2022 Clinical and Laboratory Standards Institute(CLSI)documents M27 M44s-Ed3 and M57s-Ed4.Results A total of 3 026 strains of Candida were collected,65.33%of which were isolated from sterile body sites,mainly from blood(38.86%)and pleural effusion/ascites(10.21%).The predominant species of Candida were Candida albicans(44.51%),followed by Candida parapsilosis complex(19.46%),Candida tropicalis(13.98%),Candida glabrata(10.34%),and other Candida species(0.79%).Candida albicans showed overall high susceptibility rates to the 10 antifungal drugs tested(the lowest rate being 93.62%).Only 2.97%of the strains showed dose-dependent susceptibility(SDD)to fluconazole.Candida parapsilosis complex had a SDD rate of 2.61%and a resistance rate of 9.42%to fluconazole,and susceptibility rates above 90%to other drugs.Candida glabrata had a SDD rate of 92.01%and a resistance rate of 7.99%to fluconazole,resistance rates of 32.27%and 48.24%to posaconazole and voriconazole non-wild-type strains(NWT),respectively,and susceptibility rates above 90%to other drugs.Candida tropicalis had resistance rates of 29.55%and 26.24%to fluconazole and voriconazole,respectively,resistance rates of 76.60%and 21.99%to posaconazole and echinocandins non-wild-type strains(NWT),and a resistance rate of 2.36%to echinocandins.Conclusions The prevalence and species distribution of Candida spp.in the East China region are consistent with previous domestic and international reports.Candida glabrata exhibits certain degree of resistance to fluconazole,while Candida tropicalis demonstrates higher resistance to triazole drugs.Additionally,echinocandins resistance has emerged in Candida albicans,Candida glabrata,Candida tropicalis,and Candida parapsilosis.
9.Short-term Effect of Venetoclax Combined with Azacitidine and"7+3"Regimen in the Treatment of Newly Diagnosed Elder Patients with Acute Myeloid Leukemia
Xia-Xia LIU ; Xiao-Ling WEN ; Ruo-Qi LI ; Xia-Lin ZHANG ; Tian-Bo ZHANG ; Chun-Xia DONG ; Mei-Fang WANG ; Jian-Hua ZHANG ; Lin-Hua YANG ; Rui-Juan ZHANG
Journal of Experimental Hematology 2024;32(1):96-103
Objective:To compare the short-term effect and adverse reaction of venetoclax(VEN)combined with azacitidine(AZA)versus"7+3"regimen in newly diagnosed elder patients with acute myeloid leukemia(AML).Methods:From January 2021 to January 2022,the clinical data of seventy-nine newly diagnosed elder patients with AML at the Second Hospital of Shanxi Medical University and the Shanxi Bethune Hospital were retrospectively analyzed,including VEN+AZA group(41 cases)and"7+3"group(38 cases).The propensity score matching(PSM)method was used to balance confounding factors,then response,overall survival(OS),progression-free survival(PFS)and adverse reactions between the two groups were compared.Results:The ORR of VEN+AZA group and"7+3"group was 68%and 84%,respectively,and the CRc was 64%and 72%,respectively,the differents were not statistically significant(P>0.05).In the VEN+AZA group,there were 5 non-remission(NR)patients,4 with chromosome 7 abnormality(7q-/-7),and 1 with ETV6 gene mutation.Median followed-up time between the two groups was 8 months and 12 months,respectively,and the 6-months OS was 84%vs 92%(P=0.389),while 6-months PFS was 84%vs 92%(P=0.258).The main hematological adverse reactions in two groups were stage Ⅲ-Ⅳmyelosuppression,and the incidence rate was not statistically different(P>0.05).The median time of neutrophil recovery in two groups was 27(11-70)d,25(14-61)d(P=0.161),and platelet recovery was 27(11-75)d,25(16-50)d(P=0.270),respectively.The infection rate of VEN+AZA group was lower than that of"7+3"group(56%vs 88%,P=0.012).The rate of lung infections of two groups was 36%and 64%,respectively,the difference was statistically significant(P=0.048).Conclusion:The short-term effect of VEN+AZA group and"7+3"regimens in eldrly AML patients are similar,but the VEN+AZA regimen had a lower incidence of infection.The presence of chromosome 7 abnormality(7q-/-7)may be a poor prognostic factor for elderly AML patients treated with VEN+AZA.
10.Relationship between physical activity and postoperative delirium in elderly patients undergoing knee or hip arthroplasty
Jian KONG ; Yunfei QIU ; Shanling XU ; Yuanlong WANG ; Shuhui HUA ; Yanan LIN ; Chuan LI ; Rui DONG ; Hongyan GONG ; Xu LIN ; Bin WANG ; Yanlin BI
Chinese Journal of Anesthesiology 2024;44(8):922-926
Objective:To evaluate the relationship between physical activity (PA) and postoperative delirium (POD) in elderly patients undergoing knee or hip arthroplasty.Methods:The study was conducted as part of the Perioperative Neurocognitive Impairment and Biomarkers Lifestyle Cohort, which was a nested case-control study. Medical records from elderly patients undergoing elective knee or hip arthroplasty under spinal-epidural anesthesia at Qingdao Municipal Hospital from August 2022 to August 2023 were collected. The patients were divided into a POD group ( n=89) and a non-POD group ( n=221) based on the occurrence of POD. Peripheral blood samples were collected before surgery, and the cerebrospinal fluid (CSF) 2 ml was extracted after successful puncture under spinal-epidural anesthesia for determination of the concentrations of amyloid-β 42 (Aβ 42), total tau protein (t-tau), and phosphorylated tau protein (p-tau) by enzyme-linked immunosorbent assay. Logistic regression was used to analyze the influencing factors of POD, and the mediation analysis was conducted to examine the mediating role of CSF biomarker in the relationship between PA and POD. Results:Logistic regression analysis showed that the increased concentration of CSF biomarkers Aβ 42 ( OR=0.997, P=0.006), elevated ratio of Aβ 42/t-tau ( OR=0.642, P=0.003), elevated ratio of Aβ 42/p-tau ratio ( OR=0.872, P=0.001) and PA ( OR=0.374, P=0.001) were protective factors for POD, while the elevated concentrations of t-tau ( OR=1.006, P=0.001) and p-tau ( OR=1.030, P=0.011) were risk factors for POD after adjusting for multi-confounders such as hypertension, diabetes, history of drinking, years of education and Mini-Mental State Examination score. The results of the mediation analysis showed that Aβ 42 (20%), t-tau (16%), Aβ 42/t-tau (23%) and Aβ 42/p-tau (28%) played mediating roles in the relationship between PA and POD. Conclusions:PA is a protective factor for POD in elderly patients undergoing knee or hip arthroplasty and CSF biomarkers may play a mediating role in the relationship between PA and POD.

Result Analysis
Print
Save
E-mail