1.Improvement effects of pachymic acid on myocardial injury in coronary heart disease rats by regulating mito-chondrial autophagy mediated by the PINK1/Parkin signaling pathway
Jian XIE ; Bo GAO ; Shanshan LIANG ; Qing YANG ; Siyan GUO ; Longjia GONG
China Pharmacy 2025;36(18):2267-2272
OBJECTIVE To explore whether pachymic acid (Pac) regulates mitochondrial autophagy mediated by the PTEN- induced kinase 1 (PINK1)/Parkin RBR E3 ubiquitin-protein ligase (Parkin) signaling pathway to alleviate myocardial injury in coronary heart disease (CHD) rats. METHODS SD rats were divided into control (Con) group, CHD group, Pac low-dose group (Pac-L group), Pac high-dose group (Pac-H group), Pac-H+PINK1/Parkin signaling pathway inhibitor group (Pac-H+3-MA group), with 10 rats in each group. Except for the Con group, CHD models were established in the remaining groups of rats. After successful modeling, the rats in each group were intraperitoneally injected with the corresponding drugs or normal saline. After continuous intervention for 4 weeks, the left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), and mean arterial pressure (MAP) of the rats were detected. The levels of creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), cardiac troponin I (cTnI), and cardiac troponin T (cTnT) in the serum, as well as the levels of tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), IL-1β, reactive oxygen species (ROS), malondialdehyde (MDA) in the myocardial tissue, and the activities of catalase (CAT) and superoxide dismutase (SOD), as well as the expression levels of p62, cleaved caspase-3, Parkin, PINK1 proteins and the ratio of microtubule-associated protein 1 light chain 3 Ⅱ (LC3Ⅱ)/LC3Ⅰ ratio were measured. The morphology of myocardial tissue and mitochondrial autophagic vesicles were observed, and the number of mitochondrial autophagic vesicles per unit area and the rate of cardiomyocyte apoptosis were counted. RESULTS Compared with CHD group, LVEF, MAP, IL-10 levels, CAT and SOD activities, p62, Parkin, PINK1 protein expressions, LC3Ⅱ/LC3Ⅰ ratio, the numbers of mitochondrial autophagic vesicles per unit area in the Pac-L and Pac-H E-mail:hzdpft@163.com groups were increased significantly (P<0.05); the levels of LVEDV, LVESV, CK-MB, LDH, cTnI, cTnT, TNF-α, IL-1β, ROS and MDA, cell apoptosis rates, and protein expression of cleaved caspase-3 were all decreased significantly (P<0.05); and the changes in various indicators were more pronounced in the Pac-H group (P<0.05); both groups showed varying degree of improvement in myocardial histopathological morphology. Compared with the Pac-H group, the aforementioned indicators in rats from the Pac-H+3-MA group were all significantly reversed (P<0.05). CONCLUSIONS Pac may promote mitochondrial autophagy in cardiomyocytes of CHD rats by activating the PINK1/ Parkin signaling pathway, thereby reducing inflammatory responses and oxidative stress and improving myocardial injury.
2.Study on mechanism of Yourenji Capsules in improving osteoporosis based on network pharmacology and proteomics.
Yun-Hang GAO ; Han LI ; Jian-Liang LI ; Ling SONG ; Teng-Fei CHEN ; Hong-Ping HOU ; Bo PENG ; Peng LI ; Guang-Ping ZHANG
China Journal of Chinese Materia Medica 2025;50(2):515-526
This study aimed to explore the pharmacological mechanism of Yourenji Capsules(YRJ) in improving osteoporosis by combining network pharmacology and proteomics technologies. The SD rats were randomly divided into a blank control group and a 700 mg·kg~(-1) YRJ group. The rats were subjected to gavage administration with the corresponding drugs, and the blank serum, drug-containing serum, and YRJ samples were compared using ultra performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS) to analyze the main components absorbed into blood. Network pharmacology analysis was conducted based on the YRJ components absorbed into blood to obtain related targets of the components and target genes involved in osteoporosis, and Venn diagrams were used to identify the intersection of drug action targets and disease targets. The STRING database was used for protein-protein interaction(PPI) network analysis of potential target proteins to construct a PPI network. Gene Ontology(GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment were performed using Enrichr to investigate the potential mechanism of action of YRJ. Ovariectomy(OVX) was performed to establish a rat model of osteoporosis, and the rats were divided into a sham group, a model group, and a 700 mg·kg~(-1) YRJ group. The rats were given the corresponding drugs by gavage. The femurs of the rats were subjected to label-free proteomics analysis to detect differentially expressed proteins, and GO functional enrichment and KEGG pathway enrichment analyses were performed on the differentially expressed proteins. With the help of network pharmacology and proteomics results, the mechanism by which YRJ improves osteoporosis was predicted. The analysis of the YRJ components absorbed into blood revealed 23 bioactive components of YRJ, and network pharmacology results indicated that key targets involved include tumor necrosis factor(TNF), tumor protein p53(TP53), protein kinase(AKT1), and matrix metalloproteinase 9(MMP9). These targets are mainly involved in osteoclast differentiation, estrogen signaling pathways, and nuclear factor-kappa B(NF-κB) signaling pathways. Additionally, the proteomics analysis highlighted important pathways such as peroxisome proliferator-activated receptor(PPAR) signaling pathways, mitogen-activated protein kinase(MAPK) signaling pathways, and β-alanine metabolism. The combined approaches of network pharmacology and proteomics have revealed that the mechanism by which YRJ improves osteoporosis may be closely related to the regulation of inflammation, osteoblast, and osteoclast metabolic pathways. The main pathways involved include the NF-κB signaling pathways, MAPK signaling pathways, and PPAR signaling pathways, among others.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Osteoporosis/metabolism*
;
Proteomics
;
Rats
;
Rats, Sprague-Dawley
;
Network Pharmacology
;
Female
;
Protein Interaction Maps/drug effects*
;
Capsules
;
Humans
;
Signal Transduction/drug effects*
3.UPLC-Q-TOF-MS combined with network pharmacology reveals effect and mechanism of Gentianella turkestanorum total extract in ameliorating non-alcoholic steatohepatitis.
Wu DAI ; Dong-Xuan ZHENG ; Ruo-Yu GENG ; Li-Mei WEN ; Bo-Wei JU ; Qiang HOU ; Ya-Li GUO ; Xiang GAO ; Jun-Ping HU ; Jian-Hua YANG
China Journal of Chinese Materia Medica 2025;50(7):1938-1948
This study aims to reveal the effect and mechanism of Gentianella turkestanorum total extract(GTI) in ameliorating non-alcoholic steatohepatitis(NASH). UPLC-Q-TOF-MS was employed to identify the chemical components in GTI. SwissTarget-Prediction, GeneCards, OMIM, and TTD were utilized to screen the targets of GTI components and NASH. The common targets shared by GTI components and NASH were filtered through the STRING database and Cytoscape 3.9.0 to identify core targets, followed by GO and KEGG enrichment analysis. AutoDock was used for molecular docking of key components with core targets. A mouse model of NASH was established with a methionine-choline-deficient high-fat diet. A 4-week drug intervention was conducted, during which mouse weight was monitored, and the liver-to-brain ratio was measured at the end. Hematoxylin-eosin staining, Sirius red staining, and oil red O staining were employed to observe the pathological changes in the liver tissue. The levels of various biomarkers, including aspartate aminotransferase(AST), alanine aminotransferase(ALT), hydroxyproline(HYP), total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), high-density lipoprotein cholesterol(HDL-C), malondialdehyde(MDA), superoxide dismutase(SOD), and glutathione(GSH), in the serum and liver tissue were determined. RT-qPCR was conducted to measure the mRNA levels of interleukin 1β(IL-1β), interleukin 6(IL-6), tumor necrosis factor α(TNF-α), collagen type I α1 chain(COL1A1), and α-smooth muscle actin(α-SMA). Western blotting was conducted to determine the protein levels of IL-1β, IL-6, TNF-α, and potential drug targets identified through network pharmacology. UPLC-Q-TOF/MS identified 581 chemical components of GTI, and 534 targets of GTI and 1 157 targets of NASH were screened out. The topological analysis of the common targets shared by GTI and NASH identified core targets such as IL-1β, IL-6, protein kinase B(AKT), TNF, and peroxisome proliferator activated receptor gamma(PPARG). GO and KEGG analyses indicated that the ameliorating effect of GTI on NASH was related to inflammatory responses and the phosphoinositide 3-kinase(PI3K)/AKT pathway. The staining results demonstrated that GTI ameliorated hepatocyte vacuolation, swelling, ballooning, and lipid accumulation in NASH mice. Compared with the model group, high doses of GTI reduced the AST, ALT, HYP, TC, and TG levels(P<0.01) while increasing the HDL-C, SOD, and GSH levels(P<0.01). RT-qPCR results showed that GTI down-regulated the mRNA levels of IL-1β, IL-6, TNF-α, COL1A1, and α-SMA(P<0.01). Western blot results indicated that GTI down-regulated the protein levels of IL-1β, IL-6, TNF-α, phosphorylated PI3K(p-PI3K), phosphorylated AKT(p-AKT), phosphorylated inhibitor of nuclear factor kappa B alpha(p-IκBα), and nuclear factor kappa B(NF-κB)(P<0.01). In summary, GTI ameliorates inflammation, dyslipidemia, and oxidative stress associated with NASH by regulating the PI3K/AKT/NF-κB signaling pathway.
Animals
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Mice
;
Network Pharmacology
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Chromatography, High Pressure Liquid
;
Liver/metabolism*
;
Mice, Inbred C57BL
;
Humans
;
Mass Spectrometry
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Molecular Docking Simulation
4.Characteristics of Gut Microbiota Changes and Their Relationship with Infectious Complications During Induction Chemotherapy in AML Patients.
Quan-Lei ZHANG ; Li-Li DONG ; Lin-Lin ZHANG ; Yu-Juan WU ; Meng LI ; Jian BO ; Li-Li WANG ; Yu JING ; Li-Ping DOU ; Dai-Hong LIU ; Zhen-Yang GU ; Chun-Ji GAO
Journal of Experimental Hematology 2025;33(3):738-744
OBJECTIVE:
To investigate the characteristics of gut microbiota changes in patients with acute myeloid leukemia (AML) undergoing induction chemotherapy and to explore the relationship between infectious complications and gut microbiota.
METHODS:
Fecal samples were collected from 37 newly diagnosed AML patients at four time points: before induction chemotherapy, during chemotherapy, during the neutropenic phase, and during the recovery phase. Metagenomic sequencing was used to analyze the dynamic changes in gut microbiota. Correlation analyses were conducted to assess the relationship between changes in gut microbiota and the occurrence of infectious complications.
RESULTS:
During chemotherapy, the gut microbiota α-diversity (Shannon index) of AML patients exhibited significant fluctuations. Specifically, the diversity decreased significantly during induction chemotherapy, further declined during the neutropenic phase (P < 0.05, compared to baseline), and gradually recovered during the recovery phase, though not fully returning to baseline levels.The abundances of beneficial bacteria, such as Firmicutes and Bacteroidetes, gradually decreased during chemotherapy, whereas the abundances of opportunistic pathogens, including Enterococcus, Klebsiella, and Escherichia coli, progressively increased.Analysis of the dynamic changes in gut microbiota of seven patients with bloodstream infections revealed that the bloodstream infection pathogens could be detected in the gut microbiota of the corresponding patients, with their abundance gradually increasing during the course of infection. This finding suggests that bloodstream infections may be associated with opportunistic pathogens originating from the gut microbiota.Compared to non-infected patients, the baseline samples of infected patients showed a significantly lower relative abundance of Bacteroidetes (P < 0.05). Regression analysis indicated that Bacteroidetes abundance is an independent predictive factor for infectious complications (P < 0.05, OR =13.143).
CONCLUSION
During induction chemotherapy in AML patients, gut microbiota α-diversity fluctuates significantly, and the abundance of opportunistic pathogens increase, which may be associated with bloodstream infections. Patients with lower baseline Bacteroidetes abundance are more prone to infections, and its abundance can serve as an independent predictor of infectious complications.
Humans
;
Gastrointestinal Microbiome
;
Leukemia, Myeloid, Acute/microbiology*
;
Induction Chemotherapy
;
Feces/microbiology*
;
Male
;
Female
;
Middle Aged
5.Zedoarondiol Inhibits Neovascularization in Atherosclerotic Plaques of ApoE-/- Mice by Reducing Platelet Exosomes-Derived MiR-let-7a.
Bei-Li XIE ; Bo-Ce SONG ; Ming-Wang LIU ; Wei WEN ; Yu-Xin YAN ; Meng-Jie GAO ; Lu-Lian JIANG ; Zhi-Die JIN ; Lin YANG ; Jian-Gang LIU ; Da-Zhuo SHI ; Fu-Hai ZHAO
Chinese journal of integrative medicine 2025;31(3):228-239
OBJECTIVE:
To investigate the effect of zedoarondiol on neovascularization of atherosclerotic (AS) plaque by exosomes experiment.
METHODS:
ApoE-/- mice were fed with high-fat diet to establish AS model and treated with high- and low-dose (10, 5 mg/kg daily) of zedoarondiol, respectively. After 14 weeks, the expressions of anti-angiogenic protein thrombospondin 1 (THBS-1) and its receptor CD36 in plaques, as well as platelet activation rate and exosome-derived miR-let-7a were detected. Then, zedoarondiol was used to intervene in platelets in vitro, and miR-let-7a was detected in platelet-derived exosomes (Pexo). Finally, human umbilical vein endothelial cells (HUVECs) were transfected with miR-let-7a mimics and treated with Pexo to observe the effect of miR-let-7a in Pexo on tube formation.
RESULTS:
Animal experiments showed that after treating with zedoarondiol, the neovascularization density in plaques of AS mice was significantly reduced, THBS-1 and CD36 increased, the platelet activation rate was markedly reduced, and the miR-let-7a level in Pexo was reduced (P<0.01). In vitro experiments, the platelet activation rate and miR-let-7a levels in Pexo were significantly reduced after zedoarondiol's intervention. Cell experiments showed that after Pexo's intervention, the tube length increased, and the transfection of miR-let-7a minics further increased the tube length of cells, while reducing the expressions of THBS-1 and CD36.
CONCLUSION
Zedoarondiol has the effect of inhibiting neovascularization within plaque in AS mice, and its mechanism may be potentially related to inhibiting platelet activation and reducing the Pexo-derived miRNA-let-7a level.
Animals
;
MicroRNAs/genetics*
;
Exosomes/drug effects*
;
Plaque, Atherosclerotic/genetics*
;
Neovascularization, Pathologic/genetics*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Humans
;
Blood Platelets/drug effects*
;
Apolipoproteins E/deficiency*
;
Thrombospondin 1/metabolism*
;
CD36 Antigens/metabolism*
;
Platelet Activation/drug effects*
;
Male
;
Mice
;
Mice, Inbred C57BL
6.HOXB13 in cancer development: molecular mechanisms and clinical implications.
Jian ZHANG ; Ying Ju LI ; Bo PENG ; Xuna YANG ; Miao CHEN ; Yongxing LI ; Hengbin GAO ; Haitao LI ; Ji ZHENG
Frontiers of Medicine 2025;19(3):439-455
The transcription factor HOXB13 plays crucial roles in cancer development. HOXB13 is abnormally expressed in most cancers, which makes it a valuable therapeutic target for cancer therapy. The level of HOXB13 differs significantly between healthy and cancer tissues, which indicates that the level of HOXB13 is closely related to carcinogenesis. The regulatory network mediated by HOXB13 in cancer proliferation, metastasis, and invasion has been systematically investigated. Moreover, HOXB13 variants play distinct roles in different cancers and populations. By understanding the molecular mechanisms and mutation features of HOXB13, we provide a comprehensive overview of carcinogenesis networks dependent on HOXB13. Finally, we discuss advancements in anticancer therapy targeting HOXB13 and the roles of HOXB13 in drug resistance to molecular-targeted therapies, which serves as a foundation for developing HOXB13-targeted drugs for clinical diagnosis and cancer therapies.
Humans
;
Neoplasms/metabolism*
;
Homeodomain Proteins/metabolism*
;
Carcinogenesis/genetics*
;
Mutation
;
Gene Expression Regulation, Neoplastic
;
Molecular Targeted Therapy
;
Drug Resistance, Neoplasm/genetics*
7.Association of Body Mass Index with All-Cause Mortality and Cause-Specific Mortality in Rural China: 10-Year Follow-up of a Population-Based Multicenter Prospective Study.
Juan Juan HUANG ; Yuan Zhi DI ; Ling Yu SHEN ; Jian Guo LIANG ; Jiang DU ; Xue Fang CAO ; Wei Tao DUAN ; Ai Wei HE ; Jun LIANG ; Li Mei ZHU ; Zi Sen LIU ; Fang LIU ; Shu Min YANG ; Zu Hui XU ; Cheng CHEN ; Bin ZHANG ; Jiao Xia YAN ; Yan Chun LIANG ; Rong LIU ; Tao ZHU ; Hong Zhi LI ; Fei SHEN ; Bo Xuan FENG ; Yi Jun HE ; Zi Han LI ; Ya Qi ZHAO ; Tong Lei GUO ; Li Qiong BAI ; Wei LU ; Qi JIN ; Lei GAO ; He Nan XIN
Biomedical and Environmental Sciences 2025;38(10):1179-1193
OBJECTIVE:
This study aimed to explore the association between body mass index (BMI) and mortality based on the 10-year population-based multicenter prospective study.
METHODS:
A general population-based multicenter prospective study was conducted at four sites in rural China between 2013 and 2023. Multivariate Cox proportional hazards models and restricted cubic spline analyses were used to assess the association between BMI and mortality. Stratified analyses were performed based on the individual characteristics of the participants.
RESULTS:
Overall, 19,107 participants with a sum of 163,095 person-years were included and 1,910 participants died. The underweight (< 18.5 kg/m 2) presented an increase in all-cause mortality (adjusted hazards ratio [ aHR] = 2.00, 95% confidence interval [ CI]: 1.66-2.41), while overweight (≥ 24.0 to < 28.0 kg/m 2) and obesity (≥ 28.0 kg/m 2) presented a decrease with an aHR of 0.61 (95% CI: 0.52-0.73) and 0.51 (95% CI: 0.37-0.70), respectively. Overweight ( aHR = 0.76, 95% CI: 0.67-0.86) and mild obesity ( aHR = 0.72, 95% CI: 0.59-0.87) had a positive impact on mortality in people older than 60 years. All-cause mortality decreased rapidly until reaching a BMI of 25.7 kg/m 2 ( aHR = 0.95, 95% CI: 0.92-0.98) and increased slightly above that value, indicating a U-shaped association. The beneficial impact of being overweight on mortality was robust in most subgroups and sensitivity analyses.
CONCLUSION
This study provides additional evidence that overweight and mild obesity may be inversely related to the risk of death in individuals older than 60 years. Therefore, it is essential to consider age differences when formulating health and weight management strategies.
Humans
;
Body Mass Index
;
China/epidemiology*
;
Male
;
Female
;
Middle Aged
;
Prospective Studies
;
Rural Population/statistics & numerical data*
;
Aged
;
Follow-Up Studies
;
Adult
;
Mortality
;
Cause of Death
;
Obesity/mortality*
;
Overweight/mortality*
8.Study on micro wave ablation of lung tumor based on real anatomical model
Ju LIU ; Hong-Jian GAO ; Qi WANG ; Yu-Bo ZHANG ; Hui-Jing HE ; Wei-Wei WU ; Shui-Cai WU
Chinese Medical Equipment Journal 2024;45(9):27-34
Objective To plan microwave antenna puncture direction effectively and realize personalized preoperative simulation by exploring microwave ablation(MWV)outcomes of lung cancer based on real anatomical model.Methods Firstly,a personalized MWA simulation model consisting of the lung tissue,tumor and vascular system was constructed based on the lung CT data of real patients.Secondly,the MWA effect was simulated by coupling 2 physical fields including an electromagnetic field and a biological heat transfer field,so as to determine the volume of the ablation thermocoagulation zone and the temperature distribution of the lung tissue.Finally,the effects of the vascularized network on the ablation results were quantitatively evaluated in terms of conductivity and blood perfusion,and the ablation results were analyzed with different distances between the large vessels and the antennae(5 and 10 mm from the antennae tips)and puncture angles(large vessels parallelling or intersecting with the antennae tips).Results The vascularized network reduced the volume of the thermocoagulation zone by 0.5%to 3.7%,and blood perfusion made the ablation temperature and the volume of the thermocoagulation zone decreased significantly.The cooling effect gradually diminished with the increase of the distance between the large vessels and the antenna.With the same treatment parameters,the thermocoagulation zone formed when the large vessels paralleled with the antenna was obviously larger than that when the vessles intersected with the antenna.Conclusion Personalized MWA simulation analysis based on real CT data contributes to clarifying the temperature distribution and damage estimation close to the actual situation,which provides guidance and reference for precise treatment of the lung tumor and determination of microwave antenna puncture direction.[Chinese Medical Equipment Journal,2024,45(9):27-34]
9.Recent research on gene polymorphisms and genetic susceptibility of neonatal sepsis
Jing GAO ; Jian-Bo SHU ; Yang LIU
Chinese Journal of Contemporary Pediatrics 2024;26(8):879-886
Neonatal sepsis is a common and severe infectious disease with a high mortality rate.Its pathogenesis is complex,lacks specific manifestations,and has a low positive culture rate,making early diagnosis and personalized treatment still a challenge for clinicians.Epidemiological studies on twins have shown that genetic factors are associated with neonatal sepsis.Gene polymorphisms are closely related to susceptibility,disease development,and prognosis.This article provides a review of gene polymorphisms related to neonatal sepsis,including interleukins,tumor necrosis factor,Toll-like receptors,NOD-like receptors,CD14,triggering receptor expressed on myeloid cells-1,mannose-binding lectin,and other immune proteins,aiming to promote precision medicine for this disease.
10.TCM Guidelines for Diagnosis and Treatment of Chronic Cough in Children
Xi MING ; Liqun WU ; Ziwei WANG ; Bo WANG ; Jialin ZHENG ; Jingwei HUO ; Mei HAN ; Xiaochun FENG ; Baoqing ZHANG ; Xia ZHAO ; Mengqing WANG ; Zheng XUE ; Ke CHANG ; Youpeng WANG ; Yanhong QIN ; Bin YUAN ; Hua CHEN ; Lining WANG ; Xianqing REN ; Hua XU ; Liping SUN ; Zhenqi WU ; Yun ZHAO ; Xinmin LI ; Min LI ; Jian CHEN ; Junhong WANG ; Yonghong JIANG ; Yongbin YAN ; Hengmiao GAO ; Hongmin FU ; Yongkun HUANG ; Jinghui YANG ; Zhu CHEN ; Lei XIONG
Journal of Nanjing University of Traditional Chinese Medicine 2024;40(7):722-732
Following the principles of evidence-based medicine,in accordance with the structure and drafting rules of standardized documents,based on literature research,according to the characteristics of chronic cough in children and issues that need to form a consensus,the TCM Guidelines for Diagnosis and Treatment of Chronic Cough in Children was formulated based on the Delphi method,expert discussion meetings,and public solicitation of opinions.The guideline includes scope of application,terms and definitions,eti-ology and diagnosis,auxiliary examination,treatment,prevention and care.The aim is to clarify the optimal treatment plan of Chinese medicine in the diagnosis and treatment of this disease,and to provide guidance for improving the clinical diagnosis and treatment of chronic cough in children with Chinese medicine.

Result Analysis
Print
Save
E-mail