1.Physical factors and action mechanisms affecting osteogenic/odontogenic differentiation of dental pulp stem cells
Yuting SUN ; Jiayuan WU ; Jian ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(7):1531-1540
BACKGROUND:Dental pulp stem cells are one of the stem cells with great potential in oral and maxillofacial tissue engineering.Compared with mesenchymal stem cells,dental pulp stem cells have the advantages of convenient collection,less ethical problems and higher potential of proliferation and differentiation.Currently,except for biochemical factors,physical stimulation also plays a critical role in the osteogenic/odontogenic differentiation of dental pulp stem cells. OBJECTIVE:To review the relevant physical factors and the possible signaling pathway affecting the osteogenic/odontogenic differentiation of dental pulp stem cells to find the optimal induction conditions affecting their differentiation. METHODS:PubMed and CNKI databases were searched for relevant articles using"dental pulp stem cells(DPSCs),osteogenesis differentiation,odontoblastic differentiation,hypoxia,mechanical force,laser therapy,magnetic fields,microgravity"as English and Chinese search terms.Seventy-nine articles regarding physical factors affecting osteogenic/odontogenic differentiation of dental pulp stem cells were selected for the review. RESULTS AND CONCLUSION:(1)Direct or indirect physical signals in the microenvironment have shown broad application prospects in regulating the directed differentiation of stem cells.Many related physical factors,for example,hypoxia,mechanical stimulation(dynamic hydrostatic pressure,mechanical tension,shear force,etc.),laser,microgravity,and magnetic field,have positive influences on the osteogenic/odontogenic differentiation of dental pulp stem cells.Owing to the complex mechanical environment of stomatognathic system,mechanical stimulation is a key physical factor in changing cellular environment and is also a frontier in tissue engineering.It will provide new ideas for investigating the response of dental pulp stem cells to the mechanical environment in the diagnosis and treatment of oral diseases.(2)Because this field is relatively"young",the parameters of equipment have not been unified and the relevant results are not consistent.The optimal induction parameters and conditions of related physical factors should be further explored and optimized.(3)Scaffold material,one of the three elements of tissue engineering,plays a role in promoting the osteogenic/odontogenic differentiation of dental pulp stem cells,and promotes the development of materials science and clinical technology.(4)The signaling pathways involve Notch,Wnt,MAPK,etc.The biological basis of regulating the behavior of dental pulp stem cells is not clear.The specific mechanism will be further explored in the future to provide new ideas for dental pulp regeneration and bone tissue engineering under the influence of physical factors.
2.Mechanism of Modified Shengjiangsan in Improving Diabetic Kidney Disease by Activating Mitochondrial Autophagy Based on PINK1/Parkin Signaling Pathway
Jiaxin LI ; Liya ZHOU ; Yishuo ZHANG ; Ziqiang CHEN ; Yijun HOU ; Jian SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):121-128
ObjectiveTo investigate the mechanism by which modified Shengjiangsan (MSJS) improves diabetic kidney disease (DKD) by activating mitochondrial autophagy. MethodsSixty SPF-grade male Sprague-Dawley rats aged 7-8 weeks were selected. A DKD model was established using a high-sugar, high-fat diet combined with intraperitoneal injection of streptozotocin (STZ). After successful modeling, the rats were randomly divided into six groups: a normal control group, a model group, low-, medium-, and high-dose MSJS groups (7.7, 15.4, 30.8 g·kg-1, respectively), and an irbesartan group (0.384 g·kg-1). Each group received either normal saline or the corresponding drug by gavage once daily for 28 consecutive days. Blood glucose, body weight, and kidney weight were recorded. Serum creatinine (SCr) and blood urea nitrogen (BUN) levels were detected using an automatic blood analyzer. Enzyme-linked immunosorbent assay (ELISA) was used to determine urinary microalbumin (mALB), and serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Histopathological changes in renal tissues were observed using hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and transmission electron microscopy (TEM). The expression levels of mitochondrial autophagy-related proteins in renal tissues were analyzed by Western blot. Immunofluorescence co-localization was employed to detect the co-expression of microtubule-associated protein 1 light chain 3 beta (LC3B) and cytochrome c oxidase subunit Ⅳ (COX Ⅳ). ResultsCompared with the normal control group, the model group exhibited significant increases in renal index, blood glucose, and 24-hour urinary microalbumin (24 h mALB) (P<0.05, P<0.01). The levels of serum SCr and BUN were significantly elevated (P<0.01), and the serum levels of TNF-α, IL-1β, and IL-6 were markedly upregulated (P<0.01). Histopathological examination revealed glomerular hypertrophy, mesangial expansion and increased deposition, podocyte foot process flattening and fusion, a decreased number of autophagosomes accompanied by mitochondrial swelling, vacuolar degeneration of renal tubular epithelial cells, and inflammatory cell infiltration in the renal interstitium. The expression levels of autophagy-related proteins LC3B, PTEN-induced putative kinase 1 (PINK1), and E3 ubiquitin-protein ligase (Parkin) were significantly decreased (P<0.05, P<0.01), while expression of the selective autophagy adaptor protein p62 was significantly increased (P<0.01). Immunofluorescence signal intensity and LC3B-COX Ⅳ co-expression were both diminished. Compared with the model group, the MSJS treatment groups and the irbesartan group showed significant reductions in renal index, blood glucose, and 24 h mALB (P<0.05, P<0.01). The serum SCr and BUN levels decreased significantly (P<0.05) and TNF-α, IL-1β, and IL-6 levels were significantly downregulated (P<0.05, P<0.01). Histopathological damage was alleviated, including reduced glomerular hypertrophy, decreased mesangial deposition, and attenuated podocyte foot process fusion. The number of autophagosomes increased, and mitochondrial swelling was improved. The expression levels of LC3B, PINK1, and Parkin in renal tissues were significantly upregulated, whereas p62 expression was significantly downregulated (P<0.05, P<0.01) in MSJS groups. Immunofluorescence signal intensity was enhanced, and LC3B-COX Ⅳ co-expression was increased. ConclusionMSJS alleviates the inflammatory response in DKD rats and exerts renal protective effects by regulating the PINK1/Parkin signaling pathway and activating mitochondrial autophagy.
3.Mechanism of Modified Shengjiangsan in Improving Diabetic Kidney Disease by Activating Mitochondrial Autophagy Based on PINK1/Parkin Signaling Pathway
Jiaxin LI ; Liya ZHOU ; Yishuo ZHANG ; Ziqiang CHEN ; Yijun HOU ; Jian SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):121-128
ObjectiveTo investigate the mechanism by which modified Shengjiangsan (MSJS) improves diabetic kidney disease (DKD) by activating mitochondrial autophagy. MethodsSixty SPF-grade male Sprague-Dawley rats aged 7-8 weeks were selected. A DKD model was established using a high-sugar, high-fat diet combined with intraperitoneal injection of streptozotocin (STZ). After successful modeling, the rats were randomly divided into six groups: a normal control group, a model group, low-, medium-, and high-dose MSJS groups (7.7, 15.4, 30.8 g·kg-1, respectively), and an irbesartan group (0.384 g·kg-1). Each group received either normal saline or the corresponding drug by gavage once daily for 28 consecutive days. Blood glucose, body weight, and kidney weight were recorded. Serum creatinine (SCr) and blood urea nitrogen (BUN) levels were detected using an automatic blood analyzer. Enzyme-linked immunosorbent assay (ELISA) was used to determine urinary microalbumin (mALB), and serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Histopathological changes in renal tissues were observed using hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and transmission electron microscopy (TEM). The expression levels of mitochondrial autophagy-related proteins in renal tissues were analyzed by Western blot. Immunofluorescence co-localization was employed to detect the co-expression of microtubule-associated protein 1 light chain 3 beta (LC3B) and cytochrome c oxidase subunit Ⅳ (COX Ⅳ). ResultsCompared with the normal control group, the model group exhibited significant increases in renal index, blood glucose, and 24-hour urinary microalbumin (24 h mALB) (P<0.05, P<0.01). The levels of serum SCr and BUN were significantly elevated (P<0.01), and the serum levels of TNF-α, IL-1β, and IL-6 were markedly upregulated (P<0.01). Histopathological examination revealed glomerular hypertrophy, mesangial expansion and increased deposition, podocyte foot process flattening and fusion, a decreased number of autophagosomes accompanied by mitochondrial swelling, vacuolar degeneration of renal tubular epithelial cells, and inflammatory cell infiltration in the renal interstitium. The expression levels of autophagy-related proteins LC3B, PTEN-induced putative kinase 1 (PINK1), and E3 ubiquitin-protein ligase (Parkin) were significantly decreased (P<0.05, P<0.01), while expression of the selective autophagy adaptor protein p62 was significantly increased (P<0.01). Immunofluorescence signal intensity and LC3B-COX Ⅳ co-expression were both diminished. Compared with the model group, the MSJS treatment groups and the irbesartan group showed significant reductions in renal index, blood glucose, and 24 h mALB (P<0.05, P<0.01). The serum SCr and BUN levels decreased significantly (P<0.05) and TNF-α, IL-1β, and IL-6 levels were significantly downregulated (P<0.05, P<0.01). Histopathological damage was alleviated, including reduced glomerular hypertrophy, decreased mesangial deposition, and attenuated podocyte foot process fusion. The number of autophagosomes increased, and mitochondrial swelling was improved. The expression levels of LC3B, PINK1, and Parkin in renal tissues were significantly upregulated, whereas p62 expression was significantly downregulated (P<0.05, P<0.01) in MSJS groups. Immunofluorescence signal intensity was enhanced, and LC3B-COX Ⅳ co-expression was increased. ConclusionMSJS alleviates the inflammatory response in DKD rats and exerts renal protective effects by regulating the PINK1/Parkin signaling pathway and activating mitochondrial autophagy.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
6.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
7.Neurotrophin-3 receptor switching promotes neural functional recovery in rats after spinal cord injury
Yan CONG ; Jian YU ; Zhide SUN ; Dawei KANG
Chinese Journal of Tissue Engineering Research 2025;29(11):2268-2276
BACKGROUND:Neurotrophins represent a novel therapeutic approach for spinal cord injury,showing promising clinical applicability.Autophagy modulation is one of the mechanisms by which neurotrophins exert their effects,yet the specific signaling pathways involved remain unclear. OBJECTIVE:To explore how neurotrophin-3(NT-3)modulates autophagy in oligodendrocytes via switching between P75NTR and TrkC receptors and promotes neurological function recovery after spinal cord injury,aiming to further clarify the specific molecular mechanisms involved. METHODS:Twenty-four Sprague-Dawley rats were randomly divided into three groups:sham operation,spinal cord injury,and NT-3 groups.The therapeutic effect of NT-3 on spinal cord injury in rats was evaluated using the Basso,Beattie,and Bresnahan locomotor rating scale.The expression levels of NT-3,Olig1,myelin basic protein,and the autophagy marker LC3B in rat spinal cord tissue were detected by western blot.In a cellular experiment,oligodendrocytes were cultured in vitro and divided into six groups:oxygen-glucose deprivation(OGD),OGD+NT-3,OGD+NT-3+P75NTR plasmid,OGD+NT-3+TrkC plasmid,OGD+3-methyladenine(an autophagy inhibitor),and OGD+rapamycin(an autophagy activator).Oligodendrocyte morphology was observed under a light microscope,cell apoptosis was assessed by TUNEL staining,and the expression of TrkC receptor,P75NTR,LC3B,and the phosphorylation status of the PI3K/AKT/mTOR and AMPK/mTOR signaling pathways were evaluated by western blot. RESULTS AND CONCLUSION:Animal experiments demonstrated that compared with the sham operation group,NT-3 expression significantly increased after spinal cord injury(P<0.05);exogenous NT-3 treatment accelerated neurological function recovery in rats post spinal cord injury(P<0.05)and increased the expression of Olig1 and myelin basic proteins(P<0.05).Cellular experiments revealed that 3 hours marked the early to middle/late phase transition.Compared with the OGD group,oligodendrocytes in the OGD+NT-3 group could maintain their morphology for a longer period of time,TrkC receptor expression was lower in the early phase and significantly upregulated in the middle/late phase(P<0.05),whereas P75NTR protein expression was upregulated in the early phase and downregulated in the middle/late phase(P<0.05),and autophagy levels showed an initial increase followed by a decrease(P<0.05).By comparing the morphology and TUNEL staining results of cells in the OGD+NT-3,OGD+rapamycin,and OGD+3-methyladenine groups,we found that either promoting or inhibiting autophagy alone had adverse effects on oligodendrocyte survival,whereas modulating autophagy in a manner similar to NT-3 could maximally maintain cell survival.NT-3 could promote autophagy in the early phase via the P75NTR/AMPK/mTOR signaling pathway and inhibit autophagy in the later phase through the TrkC/PI3K/AKT/mTOR signaling pathway.Based on these findings,it is concluded that NT-3 can bidirectionally regulate autophagy in oligodendrocytes through the switching of P75NTR/TrkC receptors,thereby maintaining cell survival and facilitating the recovery of neurological functions in rats after spinal cord injury.
8.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
9.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
10.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.

Result Analysis
Print
Save
E-mail