1.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
2.Myocardial patch:cell sources,improvement strategies,and optimal production methods
Wei HU ; Jian XING ; Guangxin CHEN ; Zee CHEN ; Yi ZHAO ; Dan QIAO ; Kunfu OUYANG ; Wenhua HUANG
Chinese Journal of Tissue Engineering Research 2024;28(17):2723-2730
BACKGROUND:Myocardial patches are used as an effective way to repair damaged myocardium,and there is controversy over which cells to use to make myocardial patches and how to maximize the therapeutic effect of myocardial patches in vivo. OBJECTIVE:To find out the best way to make myocardial patches by overviewing the cellular sources of myocardial patches and strategies for perfecting them. METHODS:The first author searched PubMed and Web of Science databases by using"cell sheet,cell patch,cardiomyocytes,cardiac progenitor cells,fibroblasts,embryonic stem cell,mesenchymal stem cells"as English search terms,and searched CNKI and Wanfang databases by using"myocardial patch,biological 3D printing,myocardial"as Chinese search terms.After enrollment screening,94 articles were ultimately included in the result analysis. RESULTS AND CONCLUSION:(1)The cellular sources of myocardial patches are mainly divided into three categories:somatic cells,monoenergetic stem cells,and pluripotent stem cells,respectively.There are rich sources of cells for myocardial patches,but not all of them are suitable for making myocardial patches,e.g.,myocardial patches made from fibroblasts and skeletal myoblasts carry a risk of arrhythmogenicity,and mesenchymal stem cells have a short in vivo duration of action and ethical concerns.With the discovery of induced multifunctional stem cells,a reliable source of cells for making myocardial patches is available.(2)There are two methods of making myocardial patches.One is using cell sheet technology.The other is using biological 3D printing technology.Cell sheet technology can preserve the extracellular matrix components intact and can maximally mimic the cell growth ring in vivo.However,it is still difficult to obtain myocardial patches with three-dimensional structure by cell sheet technology.Biologicasl 3D printing technology,however,can be used to obtain myocardial patches with three-dimensional structures through computerized personalized design.(3)The strategies for perfecting myocardial patches mainly include:making myocardial patches after co-cultivation of multiple cells,improving the ink formulation and scaffold composition in biological 3D printing technology,improving the therapeutic effect of myocardial patches,suppressing immune rejection after transplantation,and perfecting the differentiation and cultivation protocols of stem cells.(4)There is no optimal cell source or method for making myocardial patches,and myocardial patches obtained from a particular cell or technique alone often do not achieve the desired therapeutic effect.Therefore,researchers need to choose the appropriate strategy for making myocardial patches based on the desired therapeutic effect before making them.
3.Analysis of the causes of cage subsidence after oblique lateral lumbar interbody fusion
Zhong-You ZENG ; Ping-Quan CHEN ; Xing ZHAO ; Hong-Fei WU ; Jian-Qiao ZHANG ; Xiang-Qian FANG ; Yong-Xing SONG ; Wei YU ; Fei PEI ; Shun-Wu FAN ; Guo-Hao SONG ; Shi-Yang FAN
China Journal of Orthopaedics and Traumatology 2024;37(1):33-44
Objective To observe the cage subsidence after oblique lateral interbody fusion(OLIF)for lumbar spondylo-sis,summarize the characteristics of the cage subsidence,analyze causes,and propose preventive measures.Methods The data of 144 patients of lumbar spine lesions admitted to our hospital from October 2015 to December 2018 were retrospectively ana-lyzed.There were 43 males and 101 females,and the age ranged from 20 to 81 years old,with an average of(60.90±10.06)years old.Disease types:17 patients of lumbar intervertebral disc degenerative disease,12 patients of giant lumbar disc hernia-tion,5 patients of discogenic low back pain,33 patients of lumbar spinal stenosis,26 patients of lumbar degenerative spondy-lolisthesis,28 patients of lumbar spondylolisthesis with spondylolisthesis,11 patients of adjacent vertebral disease after lumbar internal fixation,7 patients of primary spondylitis in the inflammatory outcome stage,and 5 patients of lumbar degenerative scoliosis.Preoperative dual-energy X-ray bone mineral density examination showed 57 patients of osteopenia or osteoporosis,and 87 patients of normal bone density.The number of fusion segments:124 patients of single-segment,11 patients of two-seg-ment,8 patients of three-segment,four-segment 1 patient.There were 40 patients treated by stand-alone OLIF,and 104 patients by OLIF combined with posterior pedicle screw.Observed the occurrence of fusion cage settlement after operation,conducted monofactor analysis on possible risk factors,and observed the influence of fusion cage settlement on clinical results.Results All operations were successfully completed,the median operation time was 99 min,and the median intraoperative blood loss was 106 ml.Intraoperative endplate injury occurred in 30 patients and vertebral fracture occurred in 5 patients.The mean follow-up was(14.57±7.14)months from 6 to 30 months.During the follow-up,except for the patients of primary lumbar interstitial in-flammation and some patients of lumbar spondylolisthesis with spondylolisthesis,the others all had different degrees of cage subsidence.Cage subsidence classification:119 patients were normal subsidence,and 25 patients were abnormal subsidence(23 patients were grade Ⅰ,and 2 patients were grade Ⅱ).There was no loosening or rupture of the pedicle screw system.The height of the intervertebral space recovered from the preoperative average(9.48±1.84)mm to the postoperative average(12.65±2.03)mm,and the average(10.51±1.81)mm at the last follow-up.There were statistical differences between postop-erative and preoperative,and between the last follow-up and postoperative.The interbody fusion rate was 94.4%.The low back pain VAS decreased from the preoperative average(6.55±2.2 9)to the last follow-up(1.40±0.82),and there was statistically significant different.The leg pain VAS decreased from the preoperative average(4.72±1.49)to the final follow-up(0.60± 0.03),and the difference was statistically significant(t=9.13,P<0.000 1).The ODI index recovered from the preoperative av-erage(38.50±6.98)%to the latest follow-up(11.30±3.27)%,and there was statistically significant different.The complication rate was 31.3%(45/144),and the reoperation rate was 9.72%(14/144).Among them,8 patients were reoperated due to fusion cage subsidence or displacement,accounting for 57.14%(8/14)of reoperation.The fusion cage subsidence in this group had obvious characteristics.The monofactor analysis showed that the number of abnormal subsidence patients in the osteopenia or osteoporosis group,Stand-alone OLIF group,2 or more segments fusion group,and endplate injury group was higher than that in the normal bone mass group,OLIF combined with pedicle screw fixation group,single segment fusion group,and no endplate injury group,and the comparison had statistical differences.Conclusion Cage subsidence is a common phenomenon after 0-LIF surgery.Preoperative osteopenia or osteoporosis,Stand-alone OLIF,2 or more segments of fusion and intraoperative end-plate injury may be important factors for postoperative fusion cage subsidence.Although there is no significant correlation be-tween the degree of cage subsidence and clinical symptoms,there is a risk of cage migration,and prevention needs to be strengthened to reduce serious complications caused by fusion of cage subsidence,including reoperation.
4.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
5.Clinical guidelines for the diagnosis and treatment of osteoporotic thoracolumbar vertebral fracture with kyphotic deformity in the elderly (version 2024)
Jian CHEN ; Qingqing LI ; Jun GU ; Zhiyi HU ; Shujie ZHAO ; Zhenfei HUANG ; Tao JIANG ; Wei ZHOU ; Xiaojian CAO ; Yongxin REN ; Weihua CAI ; Lipeng YU ; Tao SUI ; Qian WANG ; Pengyu TANG ; Mengyuan WU ; Weihu MA ; Xuhua LU ; Hongjian LIU ; Zhongmin ZHANG ; Xiaozhong ZHOU ; Baorong HE ; Kainan LI ; Tengbo YU ; Xiaodong GUO ; Yongxiang WANG ; Yong HAI ; Jiangang SHI ; Baoshan XU ; Weishi LI ; Jinglong YAN ; Guangzhi NING ; Yongfei GUO ; Zhijun QIAO ; Feng ZHANG ; Fubing WANG ; Fuyang CHEN ; Yan JIA ; Xiaohua ZHOU ; Yuhui PENG ; Jin FAN ; Guoyong YIN
Chinese Journal of Trauma 2024;40(11):961-973
The incidence of osteoporotic thoracolumbar vertebral fracture (OTLVF) in the elderly is gradually increasing. The kyphotic deformity caused by various factors has become an important characteristic of OTLVF and has received increasing attention. Its clinical manifestations include pain, delayed nerve damage, sagittal imbalance, etc. Currently, the definition and diagnosis of OTLVF with kyphotic deformity in the elderly are still unclear. Although there are many treatment options, they are controversial. Existing guidelines or consensuses pay little attention to this type of fracture with kyphotic deformity. To this end, the Lumbar Education Working Group of the Spine Branch of the Chinese Medicine Education Association and Editorial Committee of Chinese Journal of Trauma organized the experts in the relevant fields to jointly develop Clinical guidelines for the diagnosis and treatment of osteoporotic thoracolumbar vertebral fractures with kyphotic deformity in the elderly ( version 2024), based on evidence-based medical advancements and the principles of scientificity, practicality, and advanced nature, which provided 18 recommendations to standardize the clinical diagnosis and treatment.
6.Protective effects of Silybum thistle extract and related formulations on liver in mice with alcoholism
Ting-Qiao WANG ; Wu-Jiang REN ; Liang-Yu LÜ ; Rong WEI ; Yue-Yi GUO ; Jian ZHAO
The Chinese Journal of Clinical Pharmacology 2024;40(7):1009-1013
Objective To investigate the protective effect of silymarin extract(SME)and its complex preparation on ethanol liver injury.Methods An ethanol liver injury model was established by gavage of 12 mL·kg-1 50%ethanol.Male mice were divided into blank group(distilled water),model group(ethanol liver injury model),SME-L,-H groups(6,20 mg·mL-1 SME),SME+Ganoderma lucidum extract(GLE)-L,-H groups(10,30 mg·mL-1 SME+GLE,SME∶GLE=1∶1),Jian An Shi Silymarin Pueraria Mirifica and Tansy tablets(JAS)-L,-H groups(68,204 mg·mL-1 JAS),there were 12 mice in each group.The serum levels of glutamic-oxaloacetic transaminase(GOT)in mice were measured by fully automated biochemical analyzer assay;the serum levels of interleukin-6(IL-6)and tumor necrosis factor-alpha(TNF-α)in mice were measured by enzyme-linked immunosorbent assay(ELASA);the hepatic tissue of oxidative stress indexes[catalase(CAT)and total superoxide dismutase(T-SOD)]were measured by ultraviolet spectrophotometer.Results The T-SOD activity in the blank group,model group,SME-L,SME-H,SME+GLE-L,SME+GLE-H,JAS-L and JAS-H groups were(192.54±49.00),(141.65±34.72),(205.83±32.77),(191.68±25.83),(192.31±28.79),(177.82±32.61),(218.58±74.80)and(210.24±31.65)U·mg·prot-1;CAT activity were(37.78±5.73),(28.92±8.44),(44.12±11.52),(41.41±9.15),(47.01±10.48),(41.63±8.95),(47.14±8.91)and(48.29±10.06)U·mg-1;GPT levels were(47.61±13.00),(97.84±26.00),(62.33±18.92),(51.84±17.91),(70.77±28.00),(58.00±21.27),(52.28±18.78)and(45.55±9.27)U·L-1;IL-6 levels were(21.03±1.52),(28.43±5.75),(21.90±3.24),(21.23±1.55),(22.26±2.58),(21.24±2.91),(22.17±4.14)and(21.14±3.02)pg·mL-1.Comparing the above indexes in the model group with the blank group,and comparing the above indexes in the SME-L,SME-H,SME+GLE-L,SME+GLE-H,JAS-L,JAS-H groups with the model group,the differences were statistically significant(all P<0.01).The TNF-α levels in blank,model,SME-L,SME-H,SME+GLE-L,SME+GLE-H,JAS-L and JAS-H groups were were(28.07±7.72),(69.02±16.34),(40.29±8.94),(48.84±10.17),(41.91±14.96),(40.07±12.75),(50.72±11.44)and(45.05±11.34)pg·mL-1.Comparing the model group with the blank group,the SME,SME+GLE-L,-M and JAS,-M groups with the model group,the differences were statistically significant(all P<0.01).Conclusion Silybum marianum extract and its compound preparation can increase the antioxidant level and reduce the inflammation of mouse liver,and have a certain improvement effect on liver injury caused by acute ethanol poisoning.
7.Morphological classification and molecular identification of Hyalomma asiaticum in parts of Xindi Township,Xinjiang
Xiao-Qing ZAN ; Qiao-Yun REN ; Jin LUO ; Yan-Long WANG ; Pei-Wen DIAO ; Li-Yan CHE ; Jian-Xun LUO ; Hong YIN ; Gui-Quan GUAN ; Guang-Yuan LIU ; Hong-Xi ZHAO
Chinese Journal of Zoonoses 2024;40(4):289-294
The purpose of this study was to identify the tick species native to Xindi Township,Yumin County,Xinjiang,China.Preliminary morphological identification of parasitic ticks collected from animals in the area was conducted with an ultra-depth of field three-dimensional VHX 600 digital stereo microscope.Total DNA of the ticks was extracted,amplified by PCR based on the COI and ITS2 gene loci,and the posi-tive PCR products were sequenced.The sequence were a-ligned with reference sequences from the NCBI database were aligned with the Basic Local Alignment Search Tool.A genet-ic phylogenetic tree was generated with the neighbor-joining method of MEGA 7.0 software to determine the evolutionary biological characteristics of ticks.Morphological identification showed that the ticks collected from Xindi Township of Yu-min County were consistent with the characteristics of Hya-lomma asiaticum.An evolutionary tree based on the COI and ITS2 gene sequences showed that the ticks collected in this study were clustered with known H.asiaticum sequences.The PCR products of COI and ITS2 were sequenced and compared,which confirmed that the collected tick species were H.asiaticum,in agreement with the morphological and molecular biological results.These findings help to clarify the distribution of ticks in Xindi Township of Xinjiang,and provide basic data for the analysis of tick genetic and evolutionary characteristics,as reference for surveillance and control of ticks in the Xinjiang Uygur Autonomous Region.
8.Development of biological safety protection third-level laboratory based on folding-modular shelters
Si-Qing ZHAO ; Jian-Qiao XIA ; Zhong-Jie SUN ; Kang OUYANG ; Xiao-Jun JIN ; Kang-Li ZHOU ; Wei XIE ; Hai-Yang LI ; Da-Peng JIANG ; Yan-Yan GAO ; Bei SUN
Chinese Medical Equipment Journal 2024;45(3):41-46
Objective To develop a biological safety protection third-level(BSL-3)laboratory based on folding-modular shelters to solve the problems of the existing laboratories in space and function expansion,large-scale deployment and low-cost transportation.Methods The BSL-3 laboratory was composed of a folding combined shelter module,a ventilation and purification module,a power supply and distribution module,a monitoring and communication module,a control system module and an equipment module.The folding combined shelter module used a leveling base frame as the foundation and a lightweight panel as the enclosure mechanism,and was divided into an auxiliary area and a protection protected area;the ventilation and purification module was made up of an air supply unit and an air exhaust unit,the air supply unit was integrated with a fresh-air air conditioner and the exhaust unit was equipped with a main fan,a standby fan and a bag in/bag out filter;the control system module adopted a supervision mode of decentralized control and centralized management,which executed communication with the data server as the center and Profinet protocol and MODBUS-TCP.Results The BSL-3 laboratory proved to meet the requirements of relevant standards in internal microenvironment,airflow direction,airtightness,working condition and disinfection effect.Conclusion The BSL-3 laboratory is compatible with large-scale transport and deployment and facilitates reliable and safe experiments for epidemic prevention and control and cross-regional support.[Chinese Medical Equipment Journal,2024,45(3):41-46]
9.Cigarette Smoke Extract-TreatedMouse Airway Epithelial Cells-Derived Exosomal LncRNA MEG3 Promotes M1 Macrophage Polarization and Pyroptosis in Chronic Obstructive Pulmonary Disease by Upregulating TREM-1 via m6A Methylation
Lijing WANG ; Qiao YU ; Jian XIAO ; Qiong CHEN ; Min FANG ; Hongjun ZHAO
Immune Network 2024;24(2):e3-
Cigarette smoke extract (CSE)-treated mouse airway epithelial cells (MAECs)-derived exosomes accelerate the progression of chronic obstructive pulmonary disease (COPD) by upregulating triggering receptor expressed on myeloid cells 1 (TREM-1); however, the specific mechanism remains unclear. We aimed to explore the potential mechanisms of CSE-treated MAECs-derived exosomes on M1 macrophage polarization and pyroptosis in COPD. In vitro, exosomes were extracted from CSE-treated MAECs, followed by co-culture with macrophages.In vivo, mice exposed to cigarette smoke (CS) to induce COPD, followed by injection or/and intranasal instillation with oe-TREM-1 lentivirus. Lung function and pathological changes were evaluated. CD68 + cell number and the levels of iNOS, TNF-α, IL-1β (M1 macrophage marker), and pyroptosis-related proteins (NOD-like receptor family pyrin domain containing 3, apoptosis-associated speck-like protein containing a caspase-1 recruitment domain, caspase-1, cleaved-caspase-1, gasdermin D [GSDMD], and GSDMD-N) were examined. The expression of maternally expressed gene 3 (MEG3), spleen focus forming virus proviral integration oncogene (SPI1), methyltransferase 3 (METTL3), and TREM-1 was detected and the binding relationships among them were verified. MEG3 increased N6-methyladenosine methylation of TREM-1 by recruiting SPI1 to activate METTL3. Overexpression of TREM-1 or METTL3 negated the alleviative effects of MEG3 inhibition on M1 polarization and pyroptosis. In mice exposed to CS, EXO−CSE further aggravated lung injury, M1 polarization, and pyroptosis, which were reversed by MEG3 inhibition. TREM-1 overexpression negated the palliative effects of MEG3 inhibition on COPD mouse lung injury. Collectively, CSE-treated MAECs-derived exosomal long non-coding RNA MEG3 may expedite M1 macrophage polarization and pyroptosis in COPD via the SPI1/METTL3/TREM-1 axis.

Result Analysis
Print
Save
E-mail