1.Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis
Jian LIU ; Hongchun ZHANG ; Chengxiang WANG ; Hongsheng CUI ; Xia CUI ; Shunan ZHANG ; Daowen YANG ; Cuiling FENG ; Yubo GUO ; Zengtao SUN ; Huiyong ZHANG ; Guangxi LI ; Qing MIAO ; Sumei WANG ; Liqing SHI ; Hongjun YANG ; Ting LIU ; Fangbo ZHANG ; Sheng CHEN ; Wei CHEN ; Hai WANG ; Lin LIN ; Nini QU ; Lei WU ; Dengshan WU ; Yafeng LIU ; Wenyan ZHANG ; Yueying ZHANG ; Yongfen FAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):182-188
The Expert Consensus on Clinical Application of Qinbaohong Zhike Oral Liquid in Treatment of Acute Bronchitis and Acute Attack of Chronic Bronchitis (GS/CACM 337-2023) was released by the China Association of Chinese Medicine on December 13th, 2023. This expert consensus was developed by experts in methodology, pharmacy, and Chinese medicine in strict accordance with the development requirements of the China Association of Chinese Medicine (CACM) and based on the latest medical evidence and the clinical medication experience of well-known experts in the fields of respiratory medicine (pulmonary diseases) and pediatrics. This expert consensus defines the application of Qinbaohong Zhike oral liquid in the treatment of cough and excessive sputum caused by phlegm-heat obstructing lung, acute bronchitis, and acute attack of chronic bronchitis from the aspects of applicable populations, efficacy evaluation, usage, dosage, drug combination, and safety. It is expected to guide the rational drug use in medical and health institutions, give full play to the unique value of Qinbaohong Zhike oral liquid, and vigorously promote the inheritance and innovation of Chinese patent medicines.
2.Prediction of Protein Thermodynamic Stability Based on Artificial Intelligence
Lin-Jie TAO ; Fan-Ding XU ; Yu GUO ; Jian-Gang LONG ; Zhuo-Yang LU
Progress in Biochemistry and Biophysics 2025;52(8):1972-1985
In recent years, the application of artificial intelligence (AI) in the field of biology has witnessed remarkable advancements. Among these, the most notable achievements have emerged in the domain of protein structure prediction and design, with AlphaFold and related innovations earning the 2024 Nobel Prize in Chemistry. These breakthroughs have transformed our ability to understand protein folding and molecular interactions, marking a pivotal milestone in computational biology. Looking ahead, it is foreseeable that the accurate prediction of various physicochemical properties of proteins—beyond static structure—will become the next critical frontier in this rapidly evolving field. One of the most important protein properties is thermodynamic stability, which refers to a protein’s ability to maintain its native conformation under physiological or stress conditions. Accurate prediction of protein stability, especially upon single-point mutations, plays a vital role in numerous scientific and industrial domains. These include understanding the molecular basis of disease, rational drug design, development of therapeutic proteins, design of more robust industrial enzymes, and engineering of biosensors. Consequently, the ability to reliably forecast the stability changes caused by mutations has broad and transformative implications across biomedical and biotechnological applications. Historically, protein stability was assessed via experimental methods such as differential scanning calorimetry (DSC) and circular dichroism (CD), which, while precise, are time-consuming and resource-intensive. This prompted the development of computational approaches, including empirical energy functions and physics-based simulations. However, these traditional models often fall short in capturing the complex, high-dimensional nature of protein conformational landscapes and mutational effects. Recent advances in machine learning (ML) have significantly improved predictive performance in this area. Early ML models used handcrafted features derived from sequence and structure, whereas modern deep learning models leverage massive datasets and learn representations directly from data. Deep neural networks (DNNs), graph neural networks (GNNs), and attention-based architectures such as transformers have shown particular promise. GNNs, in particular, excel at modeling spatial and topological relationships in molecular structures, making them well-suited for protein modeling tasks. Furthermore, attention mechanisms enable models to dynamically weigh the contribution of specific residues or regions, capturing long-range interactions and allosteric effects. Nevertheless, several key challenges remain. These include the imbalance and scarcity of high-quality experimental datasets, particularly for rare or functionally significant mutations, which can lead to biased or overfitted models. Additionally, the inherently dynamic nature of proteins—their conformational flexibility and context-dependent behavior—is difficult to encode in static structural representations. Current models often rely on a single structure or average conformation, which may overlook important aspects of stability modulation. Efforts are ongoing to incorporate multi-conformational ensembles, molecular dynamics simulations, and physics-informed learning frameworks into predictive models. This paper presents a comprehensive review of the evolution of protein thermodynamic stability prediction techniques, with emphasis on the recent progress enabled by machine learning. It highlights representative datasets, modeling strategies, evaluation benchmarks, and the integration of structural and biochemical features. The aim is to provide researchers with a structured and up-to-date reference, guiding the development of more robust, generalizable, and interpretable models for predicting protein stability changes upon mutation. As the field moves forward, the synergy between data-driven AI methods and domain-specific biological knowledge will be key to unlocking deeper understanding and broader applications of protein engineering.
3.Improvement effects of pachymic acid on myocardial injury in coronary heart disease rats by regulating mito-chondrial autophagy mediated by the PINK1/Parkin signaling pathway
Jian XIE ; Bo GAO ; Shanshan LIANG ; Qing YANG ; Siyan GUO ; Longjia GONG
China Pharmacy 2025;36(18):2267-2272
OBJECTIVE To explore whether pachymic acid (Pac) regulates mitochondrial autophagy mediated by the PTEN- induced kinase 1 (PINK1)/Parkin RBR E3 ubiquitin-protein ligase (Parkin) signaling pathway to alleviate myocardial injury in coronary heart disease (CHD) rats. METHODS SD rats were divided into control (Con) group, CHD group, Pac low-dose group (Pac-L group), Pac high-dose group (Pac-H group), Pac-H+PINK1/Parkin signaling pathway inhibitor group (Pac-H+3-MA group), with 10 rats in each group. Except for the Con group, CHD models were established in the remaining groups of rats. After successful modeling, the rats in each group were intraperitoneally injected with the corresponding drugs or normal saline. After continuous intervention for 4 weeks, the left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), and mean arterial pressure (MAP) of the rats were detected. The levels of creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), cardiac troponin I (cTnI), and cardiac troponin T (cTnT) in the serum, as well as the levels of tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), IL-1β, reactive oxygen species (ROS), malondialdehyde (MDA) in the myocardial tissue, and the activities of catalase (CAT) and superoxide dismutase (SOD), as well as the expression levels of p62, cleaved caspase-3, Parkin, PINK1 proteins and the ratio of microtubule-associated protein 1 light chain 3 Ⅱ (LC3Ⅱ)/LC3Ⅰ ratio were measured. The morphology of myocardial tissue and mitochondrial autophagic vesicles were observed, and the number of mitochondrial autophagic vesicles per unit area and the rate of cardiomyocyte apoptosis were counted. RESULTS Compared with CHD group, LVEF, MAP, IL-10 levels, CAT and SOD activities, p62, Parkin, PINK1 protein expressions, LC3Ⅱ/LC3Ⅰ ratio, the numbers of mitochondrial autophagic vesicles per unit area in the Pac-L and Pac-H E-mail:hzdpft@163.com groups were increased significantly (P<0.05); the levels of LVEDV, LVESV, CK-MB, LDH, cTnI, cTnT, TNF-α, IL-1β, ROS and MDA, cell apoptosis rates, and protein expression of cleaved caspase-3 were all decreased significantly (P<0.05); and the changes in various indicators were more pronounced in the Pac-H group (P<0.05); both groups showed varying degree of improvement in myocardial histopathological morphology. Compared with the Pac-H group, the aforementioned indicators in rats from the Pac-H+3-MA group were all significantly reversed (P<0.05). CONCLUSIONS Pac may promote mitochondrial autophagy in cardiomyocytes of CHD rats by activating the PINK1/ Parkin signaling pathway, thereby reducing inflammatory responses and oxidative stress and improving myocardial injury.
4.Prognostic value of ultrasound carotid plaque length in patients with coronary artery disease.
Wendong TANG ; Zhichao XU ; Tingfang ZHU ; Yawei YANG ; Jian NA ; Wei ZHANG ; Liang CHEN ; Zongjun LIU ; Ming FAN ; Zhifu GUO ; Xianxian ZHAO ; Yuan BAI ; Bili ZHANG ; Hailing ZHANG ; Pan LI
Chinese Medical Journal 2025;138(14):1755-1757
5.Characteristics, microbial composition, and mycotoxin profile of fermented traditional Chinese medicines.
Hui-Ru ZHANG ; Meng-Yue GUO ; Jian-Xin LYU ; Wan-Xuan ZHU ; Chuang WANG ; Xin-Xin KANG ; Jiao-Yang LUO ; Mei-Hua YANG
China Journal of Chinese Materia Medica 2025;50(1):48-57
Fermented traditional Chinese medicine(TCM) has a long history of medicinal use, such as Sojae Semen Praeparatum, Arisaema Cum Bile, Pinelliae Rhizoma Fermentata, red yeast rice, and Jianqu. Fermentation technology was recorded in the earliest TCM work, Shen Nong's Classic of the Materia Medica. Microorganisms are essential components of the fermentation process. However, the contamination of fermented TCM by toxigenic fungi and mycotoxins due to unstandardized fermentation processes seriously affects the quality of TCM and poses a threat to the life and health of consumers. In this paper, the characteristics, microbial composition, and mycotoxin profile of fermented TCM are systematically summarized to provide a theoretical basis for its quality and safety control.
Fermentation
;
Mycotoxins/analysis*
;
Drugs, Chinese Herbal/analysis*
;
Fungi/classification*
;
Bacteria/genetics*
;
Drug Contamination
;
Medicine, Chinese Traditional
6.UPLC-Q-TOF-MS combined with network pharmacology reveals effect and mechanism of Gentianella turkestanorum total extract in ameliorating non-alcoholic steatohepatitis.
Wu DAI ; Dong-Xuan ZHENG ; Ruo-Yu GENG ; Li-Mei WEN ; Bo-Wei JU ; Qiang HOU ; Ya-Li GUO ; Xiang GAO ; Jun-Ping HU ; Jian-Hua YANG
China Journal of Chinese Materia Medica 2025;50(7):1938-1948
This study aims to reveal the effect and mechanism of Gentianella turkestanorum total extract(GTI) in ameliorating non-alcoholic steatohepatitis(NASH). UPLC-Q-TOF-MS was employed to identify the chemical components in GTI. SwissTarget-Prediction, GeneCards, OMIM, and TTD were utilized to screen the targets of GTI components and NASH. The common targets shared by GTI components and NASH were filtered through the STRING database and Cytoscape 3.9.0 to identify core targets, followed by GO and KEGG enrichment analysis. AutoDock was used for molecular docking of key components with core targets. A mouse model of NASH was established with a methionine-choline-deficient high-fat diet. A 4-week drug intervention was conducted, during which mouse weight was monitored, and the liver-to-brain ratio was measured at the end. Hematoxylin-eosin staining, Sirius red staining, and oil red O staining were employed to observe the pathological changes in the liver tissue. The levels of various biomarkers, including aspartate aminotransferase(AST), alanine aminotransferase(ALT), hydroxyproline(HYP), total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), high-density lipoprotein cholesterol(HDL-C), malondialdehyde(MDA), superoxide dismutase(SOD), and glutathione(GSH), in the serum and liver tissue were determined. RT-qPCR was conducted to measure the mRNA levels of interleukin 1β(IL-1β), interleukin 6(IL-6), tumor necrosis factor α(TNF-α), collagen type I α1 chain(COL1A1), and α-smooth muscle actin(α-SMA). Western blotting was conducted to determine the protein levels of IL-1β, IL-6, TNF-α, and potential drug targets identified through network pharmacology. UPLC-Q-TOF/MS identified 581 chemical components of GTI, and 534 targets of GTI and 1 157 targets of NASH were screened out. The topological analysis of the common targets shared by GTI and NASH identified core targets such as IL-1β, IL-6, protein kinase B(AKT), TNF, and peroxisome proliferator activated receptor gamma(PPARG). GO and KEGG analyses indicated that the ameliorating effect of GTI on NASH was related to inflammatory responses and the phosphoinositide 3-kinase(PI3K)/AKT pathway. The staining results demonstrated that GTI ameliorated hepatocyte vacuolation, swelling, ballooning, and lipid accumulation in NASH mice. Compared with the model group, high doses of GTI reduced the AST, ALT, HYP, TC, and TG levels(P<0.01) while increasing the HDL-C, SOD, and GSH levels(P<0.01). RT-qPCR results showed that GTI down-regulated the mRNA levels of IL-1β, IL-6, TNF-α, COL1A1, and α-SMA(P<0.01). Western blot results indicated that GTI down-regulated the protein levels of IL-1β, IL-6, TNF-α, phosphorylated PI3K(p-PI3K), phosphorylated AKT(p-AKT), phosphorylated inhibitor of nuclear factor kappa B alpha(p-IκBα), and nuclear factor kappa B(NF-κB)(P<0.01). In summary, GTI ameliorates inflammation, dyslipidemia, and oxidative stress associated with NASH by regulating the PI3K/AKT/NF-κB signaling pathway.
Animals
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Mice
;
Network Pharmacology
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Chromatography, High Pressure Liquid
;
Liver/metabolism*
;
Mice, Inbred C57BL
;
Humans
;
Mass Spectrometry
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Molecular Docking Simulation
7.Optimization of extraction process for Shenxiong Huanglian Jiedu Granules based on AHP-CRITIC hybrid weighting method, grey correlation analysis, and BP-ANN.
Zi-An LI ; De-Wen LIU ; Xin-Jian LI ; Bing-Yu WU ; Qun LAN ; Meng-Jia GUO ; Jia-Hui SUN ; Nan-Yang LIU ; Hui PEI ; Hao LI ; Hong YI ; Jin-Yu WANG ; Liang-Mian CHEN
China Journal of Chinese Materia Medica 2025;50(10):2674-2683
By employing the analytic hierarchy process(AHP), the CRITIC method(a weight determination method based on indicator correlations), and the AHP-CRITIC hybrid weighting method, the weight coefficients of evaluation indicators were determined, followed by a comprehensive score comparison. The grey correlation analysis was then performed to analyze the results calculated using the hybrid weighting method. Subsequently, a backpropagation-artificial neural network(BP-ANN) model was constructed to predict the extraction process parameters and optimize the extraction process for Shenxiong Huanglian Jiedu Granules(SHJG). In the extraction process, an L_9(3~4) orthogonal experiment was designed to optimize three factors at three levels, including extraction frequency, water addition amount, and extraction time. The evaluation indicators included geniposide, berberine, ginsenoside Rg_1 + Re, ginsenoside Rb_1, ferulic acid, and extract yield. Finally, the optimal extraction results obtained by the orthogonal experiment, grey correlation analysis, and BP-ANN method were compared, and validation experiments were conducted. The results showed that the optimal extraction process involved two rounds of aqueous extraction, each lasting one hour; the first extraction used ten times the amount of added water, while the second extraction used eight times the amount. In the validation experiments, the average content of each indicator component was higher than the average content obtained in the orthogonal experiment, with a higher comprehensive score. The optimized extraction process parameters were reliable and stable, making them suitable for subsequent preparation process research.
Drugs, Chinese Herbal/analysis*
;
Neural Networks, Computer
8.Mechanism of Yishen Jiangtang Decoction in regulating endoplasmic reticulum stress-mediated NLRP3 inflammasome to improve renal damage in diabetic nephropathy db/db mice.
Yun-Jie YANG ; Bin-Hua YE ; Chen QIU ; Han-Qing WU ; Bo-Wei HUANG ; Tong WANG ; Shi-Wei RUAN ; Fang GUO ; Jian-Ting WANG ; Ming-Qian JIANG
China Journal of Chinese Materia Medica 2025;50(10):2740-2749
This study aims to explore the mechanism through which Yishen Jiangtang Decoction(YSJTD) regulates endoplasmic reticulum stress(ERS)-mediated NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome to improve diabetic nephropathy(DN) in db/db mice. Thirty db/db mice were randomly divided into the model group, YSJTD group, ERS inhibitor 4-phenylbutyric acid(4-PBA) group, with 10 mice in each group. Additionally, 10 db/m mice were selected as the control group. The YSJTD group was orally administered YSJTD at a dose of 0.01 mL·g~(-1), the 4-PBA group was orally administered 4-PBA at a dose of 0.5 mg·g~(-1), and the control and model groups were given an equal volume of carboxylmethyl cellulose sodium. The treatments were administered once daily for 8 weeks. Food intake, water consumption, and body weight were recorded every 2 weeks. After the intervention, fasting blood glucose(FBG), glycosylated hemoglobin(HbA1c), urine microalbumin(U-mALB), 24-hour urine volume, serum creatinine(Scr), and blood urea nitrogen(BUN) were measured. Inflammatory markers interleukin-1β(IL-1β) and interleukin-18(IL-18) were detected using the enzyme-linked immunosorbent assay(ELISA). Renal pathology was assessed through hematoxylin-eosin(HE), periodic acid-Schiff(PAS), and Masson staining, and transmission electron microscopy(TEM). Western blot was used to detect the expression levels of glucose-regulated protein 78(GRP78), C/EBP homologous protein(CHOP), NLRP3, apoptosis-associated speck-like protein containing CARD(ASC), cysteinyl aspartate-specific proteinase(caspase-1), and gasdermin D(GSDMD) in kidney tissues. The results showed that compared to the control group, the model group exhibited poor general condition, increased weight and food and water intake, and significantly higher levels of FBG, HbA1c, U-mALB, kidney index, 24-hour urine volume, IL-1β, and IL-18. Compared to the model group, the YSJTD and 4-PBA groups showed improved general condition, increased body weight, decreased food intake, and lower levels of FBG, U-mALB, kidney index, 24-hour urine volume, and IL-1β. Specifically, the YSJTD group showed a significant reduction in IL-18 levels compared to the model group, while the 4-PBA group exhibited decreased water intake and HbA1c levels compared to the model group. Although there was a decreasing trend in water intake and HbA1c in the YSJTD group, the differences were not statistically significant. No significant differences were observed in BUN, Scr, and kidney weight among the groups. Renal pathology revealed that the model group exhibited more severe renal damage compared to the control group. Kidney sections from the model group showed diffuse mesangial proliferation in the glomeruli, tubular edema, tubular dilation, significant inflammatory cell infiltration in the interstitium, and increased glycogen staining and blue collagen deposition in the basement membrane. In contrast, the YSJTD and 4-PBA groups showed varying degrees of improvement in renal damage, glycogen staining, and collagen deposition, with the YSJTD group showing more significant improvements. TEM analysis indicated that the model group had extensive cytoplasmic edema, homogeneous thickening of the basement membrane, fewer foot processes, and widening of fused foot processes. In the YSJTD and 4-PBA groups, cytoplasmic swelling of renal tissues was reduced, the basement membrane remained intact and uniform, and foot process fusion improved.Western blot results indicated that compared to the control group, the model group showed upregulation of GRP78, CHOP, GSDMD, NLRP3, ASC, and caspase-1 expression. In contrast, both the YSJTD and 4-PBA groups showed downregulation of these markers compared to the model group. These findings suggest that YSJTD exerts a protective effect against DN by alleviating NLRP3 inflammasome activation through the inhibition of ERS, thereby improving the inflammatory response in db/db DN mice.
Animals
;
Endoplasmic Reticulum Stress/drug effects*
;
Diabetic Nephropathies/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Inflammasomes/drug effects*
;
Male
;
Kidney/pathology*
;
Endoplasmic Reticulum Chaperone BiP
;
Humans
;
Interleukin-18/genetics*
;
Mice, Inbred C57BL
9.Innovation and application of traditional Chinese medicine dispensing promoted through integration of whole-process data elements.
Huan-Fei YANG ; Si-Yu LI ; Chen-Qian YU ; Jian-Kun WU ; Fang LIU ; Li-Bin JIANG ; Chun-Jin LI ; Xiang-Fei SU ; Wei-Guo BAI ; Hua-Qiang ZHAI ; Shi-Yuan JIN ; Yong-Yan WANG
China Journal of Chinese Materia Medica 2025;50(11):3189-3196
As a new type of production factor that can empower the development of new quality productivity, the data element is an important engine to promote the high quality development of the industry. Traditional Chinese medicine(TCM) dispensing is the most basic work of TCM clinical pharmacy, and its quality directly affects the clinical efficacy of TCM. The integration of data elements and TCM dispensing can stimulate the innovation and vitality of the TCM dispensing industry and promote the high-quality and sustainable development of the industry. A large-scale, detailed, and systematic study on TCM dispensing was conducted. The innovative practice path of data fusion construction in the whole process of TCM dispensing was investigated by integrating the digital resources "nine full activities" of TCM dispensing, creating the digital dictionary of "TCM clinical information data elements", and exploring innovative applications of TCM dispensing driven by data and technology, so as to promote the standardized, digital, and intelligent development of TCM dispensing in medical health services. The research content of this project was successfully selected as the second batch of "Data element×" typical cases of National Data Administration in 2024, which is the only selected case in the field of TCM.
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal
;
Humans
10.Identification of critical quality attributes related to property and flavor of Jianwei Xiaoshi Tablets based on T1R2/T1R3/TRPV1-HEMT biosensor.
Dong-Hong LIU ; Yan-Yu HAN ; Jing WANG ; Hai-Yang LI ; Xin-Yu GUO ; Hui-Min FENG ; Han HE ; Shuo-Shuo XU ; Zhi-Jian ZHONG ; Zhi-Sheng WU
China Journal of Chinese Materia Medica 2025;50(14):3930-3937
The quality of traditional Chinese medicine(TCM) is a critical foundation for ensuring the stability of its efficacy, as well as the safety and effectiveness of its clinical use. The identification of critical quality attributes(CQAs) is one of the core components of TCM preparation quality control. This study focuses on Jianwei Xiaoshi Tablets and explores their CQAs related to property and flavor from the perspective of taste receptor proteins. Three taste receptor proteins, T1R2, T1R3, and TRPV1, were selected, and a biosensor based on high-electron-mobility transistor(HEMT) was constructed to detect the interactions between Jianwei Xiaoshi Tablets and taste receptor proteins. Simultaneously, liquid chromatography-mass spectrometry(LC-MS) technology was used to analyze the chemical composition of Jianwei Xiaoshi Tablets. In examining the interaction strength, the results indicated that the interaction between Jianwei Xiaoshi Tablets and TRPV1 protein was the strongest, followed by T1R3, with the interaction with T1R2 being relatively weaker. By combining biosensing technology with LC-MS, 16 chemical components were identified from Jianwei Xiaoshi Tablets, among which six were selected as CQAs for sweetness and seven for pungency. Further validation experiments demonstrated that CQAs such as hesperidin and hesperetin had strong interactions with their corresponding taste receptor proteins. Through the combined use of multiple technological approaches, this study successfully determined the property and flavor-related CQAs of Jianwei Xiaoshi Tablets. It provides novel ideas and approach for the identification of CQAs in TCM preparations and offers comprehensive theoretical support for TCM quality control, contributing to the improvement and development of TCM preparation quality control systems.
Drugs, Chinese Herbal/chemistry*
;
Biosensing Techniques/methods*
;
TRPV Cation Channels/chemistry*
;
Tablets/chemistry*
;
Receptors, G-Protein-Coupled/genetics*
;
Quality Control
;
Taste
;
Humans
;
Mass Spectrometry

Result Analysis
Print
Save
E-mail