1.Finite element analysis of anterior maxillary segmental distraction osteogenesis using asymmetric distractors in patients with unilateral cleft lip and palate
Zehua JIN ; Ruomei LI ; Jiajun SHI ; Yuehua ZHANG ; Zhenqi CHEN
The Korean Journal of Orthodontics 2025;55(2):142-153
Objective:
The treatment of asymmetric maxillary hypoplasia and dental crowding secondary to unilateral cleft lip and palate (UCLP) is often challenging.This study introduced an asymmetric tooth-borne distractor in anterior maxillary segmental distraction osteogenesis and used three-dimensional finite element analysis to evaluate its potential for clinical application in cases of asymmetrical maxillary hypoplasia.
Methods:
A cone-beam computed tomography scan of a late adolescent with UCLP was used to construct a three-dimensional finite element model of the teeth and maxillary structures. An asymmetric distractor model was used to simulate conventional distraction osteogenesis and asymmetric distraction osteogenesis (ADO) to evaluate the resultant stress distribution and displacement.
Results:
Postoperatively, both distraction methods resulted in anterior maxillary segment advancement with a slight upward movement. ADO yielded a greater increase in the dental arch length on the cleft side and induced rotation of the anterior maxillary segment, potentially improving midline deviation. Both methods showed similar stress distributions, with higher stress concentrations on the cleft side.
Conclusions
ADO may offer clinical advantages in correcting asymmetrical maxillary hypoplasia in patients with UCLP by facilitating asymmetrical expansion and rotation of the maxilla. Further research is needed to generalize these findings to other clinical presentations.
2.Finite element analysis of anterior maxillary segmental distraction osteogenesis using asymmetric distractors in patients with unilateral cleft lip and palate
Zehua JIN ; Ruomei LI ; Jiajun SHI ; Yuehua ZHANG ; Zhenqi CHEN
The Korean Journal of Orthodontics 2025;55(2):142-153
Objective:
The treatment of asymmetric maxillary hypoplasia and dental crowding secondary to unilateral cleft lip and palate (UCLP) is often challenging.This study introduced an asymmetric tooth-borne distractor in anterior maxillary segmental distraction osteogenesis and used three-dimensional finite element analysis to evaluate its potential for clinical application in cases of asymmetrical maxillary hypoplasia.
Methods:
A cone-beam computed tomography scan of a late adolescent with UCLP was used to construct a three-dimensional finite element model of the teeth and maxillary structures. An asymmetric distractor model was used to simulate conventional distraction osteogenesis and asymmetric distraction osteogenesis (ADO) to evaluate the resultant stress distribution and displacement.
Results:
Postoperatively, both distraction methods resulted in anterior maxillary segment advancement with a slight upward movement. ADO yielded a greater increase in the dental arch length on the cleft side and induced rotation of the anterior maxillary segment, potentially improving midline deviation. Both methods showed similar stress distributions, with higher stress concentrations on the cleft side.
Conclusions
ADO may offer clinical advantages in correcting asymmetrical maxillary hypoplasia in patients with UCLP by facilitating asymmetrical expansion and rotation of the maxilla. Further research is needed to generalize these findings to other clinical presentations.
3.Finite element analysis of anterior maxillary segmental distraction osteogenesis using asymmetric distractors in patients with unilateral cleft lip and palate
Zehua JIN ; Ruomei LI ; Jiajun SHI ; Yuehua ZHANG ; Zhenqi CHEN
The Korean Journal of Orthodontics 2025;55(2):142-153
Objective:
The treatment of asymmetric maxillary hypoplasia and dental crowding secondary to unilateral cleft lip and palate (UCLP) is often challenging.This study introduced an asymmetric tooth-borne distractor in anterior maxillary segmental distraction osteogenesis and used three-dimensional finite element analysis to evaluate its potential for clinical application in cases of asymmetrical maxillary hypoplasia.
Methods:
A cone-beam computed tomography scan of a late adolescent with UCLP was used to construct a three-dimensional finite element model of the teeth and maxillary structures. An asymmetric distractor model was used to simulate conventional distraction osteogenesis and asymmetric distraction osteogenesis (ADO) to evaluate the resultant stress distribution and displacement.
Results:
Postoperatively, both distraction methods resulted in anterior maxillary segment advancement with a slight upward movement. ADO yielded a greater increase in the dental arch length on the cleft side and induced rotation of the anterior maxillary segment, potentially improving midline deviation. Both methods showed similar stress distributions, with higher stress concentrations on the cleft side.
Conclusions
ADO may offer clinical advantages in correcting asymmetrical maxillary hypoplasia in patients with UCLP by facilitating asymmetrical expansion and rotation of the maxilla. Further research is needed to generalize these findings to other clinical presentations.
4.Finite element analysis of anterior maxillary segmental distraction osteogenesis using asymmetric distractors in patients with unilateral cleft lip and palate
Zehua JIN ; Ruomei LI ; Jiajun SHI ; Yuehua ZHANG ; Zhenqi CHEN
The Korean Journal of Orthodontics 2025;55(2):142-153
Objective:
The treatment of asymmetric maxillary hypoplasia and dental crowding secondary to unilateral cleft lip and palate (UCLP) is often challenging.This study introduced an asymmetric tooth-borne distractor in anterior maxillary segmental distraction osteogenesis and used three-dimensional finite element analysis to evaluate its potential for clinical application in cases of asymmetrical maxillary hypoplasia.
Methods:
A cone-beam computed tomography scan of a late adolescent with UCLP was used to construct a three-dimensional finite element model of the teeth and maxillary structures. An asymmetric distractor model was used to simulate conventional distraction osteogenesis and asymmetric distraction osteogenesis (ADO) to evaluate the resultant stress distribution and displacement.
Results:
Postoperatively, both distraction methods resulted in anterior maxillary segment advancement with a slight upward movement. ADO yielded a greater increase in the dental arch length on the cleft side and induced rotation of the anterior maxillary segment, potentially improving midline deviation. Both methods showed similar stress distributions, with higher stress concentrations on the cleft side.
Conclusions
ADO may offer clinical advantages in correcting asymmetrical maxillary hypoplasia in patients with UCLP by facilitating asymmetrical expansion and rotation of the maxilla. Further research is needed to generalize these findings to other clinical presentations.
5.Finite element analysis of anterior maxillary segmental distraction osteogenesis using asymmetric distractors in patients with unilateral cleft lip and palate
Zehua JIN ; Ruomei LI ; Jiajun SHI ; Yuehua ZHANG ; Zhenqi CHEN
The Korean Journal of Orthodontics 2025;55(2):142-153
Objective:
The treatment of asymmetric maxillary hypoplasia and dental crowding secondary to unilateral cleft lip and palate (UCLP) is often challenging.This study introduced an asymmetric tooth-borne distractor in anterior maxillary segmental distraction osteogenesis and used three-dimensional finite element analysis to evaluate its potential for clinical application in cases of asymmetrical maxillary hypoplasia.
Methods:
A cone-beam computed tomography scan of a late adolescent with UCLP was used to construct a three-dimensional finite element model of the teeth and maxillary structures. An asymmetric distractor model was used to simulate conventional distraction osteogenesis and asymmetric distraction osteogenesis (ADO) to evaluate the resultant stress distribution and displacement.
Results:
Postoperatively, both distraction methods resulted in anterior maxillary segment advancement with a slight upward movement. ADO yielded a greater increase in the dental arch length on the cleft side and induced rotation of the anterior maxillary segment, potentially improving midline deviation. Both methods showed similar stress distributions, with higher stress concentrations on the cleft side.
Conclusions
ADO may offer clinical advantages in correcting asymmetrical maxillary hypoplasia in patients with UCLP by facilitating asymmetrical expansion and rotation of the maxilla. Further research is needed to generalize these findings to other clinical presentations.
6.Plasma club cell secretory protein reflects early lung injury: comprehensive epidemiological evidence.
Jiajun WEI ; Jinyu WU ; Hongyue KONG ; Liuquan JIANG ; Yong WANG ; Ying GUO ; Quan FENG ; Jisheng NIE ; Yiwei SHI ; Xinri ZHANG ; Xiaomei KONG ; Xiao YU ; Gaisheng LIU ; Fan YANG ; Jun DONG ; Jin YANG
Environmental Health and Preventive Medicine 2025;30():26-26
BACKGROUND:
It is inaccurate to reflect the level of dust exposure through working years. Furthermore, identifying a predictive indicator for lung function decline is significant for coal miners. The study aimed to explored whether club cell secretory protein (CC16) levels can reflect early lung function changes.
METHODS:
The cumulative respiratory dust exposure (CDE) levels of 1,461 coal miners were retrospectively assessed by constructed a job-exposure matrix to replace working years. Important factors affecting lung function and CC16 were selected by establishing random forest models. Subsequently, the potential of CC16 to reflect lung injury was explored from multiple perspectives. First, restricted cubic spline (RCS) models were used to compare the trends of changes in lung function indicators and plasma CC16 levels after dust exposure. Then mediating analysis was performed to investigate the role of CC16 in the association between dust exposure and lung function decline. Finally, the association between baseline CC16 levels and follow-up lung function was explored.
RESULTS:
The median CDE were 35.13 mg/m3-years. RCS models revealed a rapid decline in forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), and their percentages of predicted values when CDE exceeded 25 mg/m3-years. The dust exposure level (<5 mg/m3-years) causing significant changes in CC16 was much lower than the level (25 mg/m3-years) that caused changes in lung function indicators. CC16 mediated 11.1% to 26.0% of dust-related lung function decline. Additionally, workers with low baseline CC16 levels experienced greater reductions in lung function in the future.
CONCLUSIONS
CC16 levels are more sensitive than lung indicators in reflecting early lung function injury and plays mediating role in lung function decline induced by dust exposure. Low baseline CC16 levels predict poor future lung function.
Uteroglobin/blood*
;
Humans
;
Dust/analysis*
;
Occupational Exposure/analysis*
;
Male
;
Middle Aged
;
Adult
;
Retrospective Studies
;
Lung Injury/chemically induced*
;
Coal Mining
;
Biomarkers/blood*
;
China/epidemiology*
;
Air Pollutants, Occupational
;
Female
7.Prospects and technical challenges of non-invasive brain-computer interfaces in manned space missions.
Yumeng JU ; Jiajun LIU ; Zejun LI ; Yiming LIU ; Hairuo HE ; Jin LIU ; Bangshan LIU ; Mi WANG ; Yan ZHANG
Journal of Central South University(Medical Sciences) 2025;50(8):1363-1370
During long-duration manned space missions, the complex and extreme space environment exerts significant impacts on astronauts' physiological, psychological, and cognitive functions, thereby posing direct risks to mission safety and operational efficiency. As a key bridge between the brain and external devices, brain-computer interface (BCI) technology enables precise acquisition and interpretation of neural signals, offering a novel paradigm for human-machine collaboration in manned spaceflight. Non-invasive BCI technology shows broad application prospects across astronaut selection, mission training, in-orbit task execution, and post-mission rehabilitation. During mission preparation, multimodal signal assessment and neurofeedback training based on BCI can effectively enhance cognitive performance and psychological resilience. During mission execution, BCI can provide real-time monitoring of physiological and psychological states and enable intention-based device control, thereby improving operational efficiency and safety. In the post-mission rehabilitation phase, non-invasive BCI combined with neuromodulation may improve emotional and cognitive functions, support motor and cognitive recovery, and contribute to long-term health management. However, the application of BCI in space still faces challenges, including insufficient signal robustness, limited system adaptability, and suboptimal data processing efficiency. Looking forward, integrating multimodal physiological sensors with deep learning algorithms to achieve accurate monitoring and individualized intervention, and combining BCI with virtual reality and robotics to develop intelligent human-machine collaboration models, will provide more efficient support for space missions.
Brain-Computer Interfaces
;
Humans
;
Space Flight
;
Astronauts/psychology*
;
Neurofeedback
;
Cognition
;
Electroencephalography
;
Man-Machine Systems
8.Alginate lyase immobilized Chlamydomonas algae microrobots: minimally invasive therapy for biofilm penetration and eradication.
Xiaoting ZHANG ; Huaan LI ; Lu LIU ; Yanzhen SONG ; Lishan ZHANG ; Jiajun MIAO ; Jiamiao JIANG ; Hao TIAN ; Chang LIU ; Fei PENG ; Yingfeng TU
Acta Pharmaceutica Sinica B 2025;15(6):3259-3272
Bacterial biofilms can make traditional antibiotics impenetrable and even promote the development of antibiotic-resistant strains. Therefore, non-antibiotic strategies to effectively penetrate and eradicate the formed biofilms are urgently needed. Here, we demonstrate the development of self-propelled biohybrid microrobots that can enhance the degradation and penetration effects for Pseudomonas aeruginosa biofilms in minimally invasive strategy. The biohybrid microrobots (CR@Alg) are constructed by surface modification of Chlamydomonas reinhardtii (CR) microalgae with alginate lyase (Alg) via biological orthogonal reaction. By degrading the biofilm components, the number of CR@Alg microrobots with fast-moving capability penetrating the biofilm increases by around 2.4-fold compared to that of microalgae. Massive reactive oxygen species are subsequently generated under laser irradiation due to the presence of chlorophyll, inherent photosensitizers of microalgae, thus triggering photodynamic therapy (PDT) to combat bacteria. Our algae-based microrobots with superior biocompatibility eliminate biofilm-infections efficiently and tend to suppress the inflammatory response in vivo, showing huge promise for the active treatment of biofilm-associated infections.
9.Anti-CD24 antibody-nitric oxide donor conjugates bearing a self-bioorthogonal cleavable linker.
Jianbing WU ; Tianyue CHENG ; Jiajun XIE ; Ziyu QIAN ; Linhua HUANG ; Xun YUAN ; Libang ZHANG ; Shan YANG ; Yihua ZHANG ; Tonglin XU ; Juan ZHANG ; Zhangjian HUANG
Acta Pharmaceutica Sinica B 2025;15(10):5366-5386
Triple-negative breast cancer (TNBC) is a highly aggressive malignancy predominantly managed via chemotherapy. Our clinical sample analysis revealed a significant correlation between elevated CD24 expression in TNBC tumor cells and patient survival rates. We developed a novel antibody-drug conjugate (ADC), named HN03, consisting of an antibody with engineered cysteines for site-specific conjugation with a low toxic nitric oxide (NO) precursor as its payload through a novel Pt(IV)-mediated bioorthogonal self-cleavable linker. HN03 specifically targets tumor cells expressing high levels of CD24, concurrently generating cisplatin and releasing NO upon activation. HN03 also exhibited potent in vitro and in vivo antitumor activity. It significantly reduced tumor growth at various doses, prevented tumor metastasis, with markedly lower toxicity than traditional chemotherapy agents. We found that a key mechanism of its action involved inducing apoptosis and endoplasmic reticulum stress, substantially decreasing the number of M2-type macrophages. Overall, HN03 stands out as a promising therapeutic option for TNBC, offering a targeted treatment with reduced side effects and the potential for improved outcomes. Furthermore, using Pt(IV) in the linker and an NO precursor as the payload enhances the versatility of the Antibody-NO donor Conjugate (ANC), offering new avenues for the design of the next generation of ADCs.
10.JMJD1C forms condensate to facilitate a RUNX1-dependent gene expression program shared by multiple types of AML cells.
Qian CHEN ; Saisai WANG ; Juqing ZHANG ; Min XIE ; Bin LU ; Jie HE ; Zhuoran ZHEN ; Jing LI ; Jiajun ZHU ; Rong LI ; Pilong LI ; Haifeng WANG ; Christopher R VAKOC ; Robert G ROEDER ; Mo CHEN
Protein & Cell 2025;16(5):338-364
JMJD1C (Jumonji Domain Containing 1C), a member of the lysine demethylase 3 (KDM3) family, is universally required for the survival of several types of acute myeloid leukemia (AML) cells with different genetic mutations, representing a therapeutic opportunity with broad application. Yet how JMJD1C regulates the leukemic programs of various AML cells is largely unexplored. Here we show that JMJD1C interacts with the master hematopoietic transcription factor RUNX1, which thereby recruits JMJD1C to the genome to facilitate a RUNX1-driven transcriptional program that supports leukemic cell survival. The underlying mechanism hinges on the long N-terminal disordered region of JMJD1C, which harbors two inseparable abilities: condensate formation and direct interaction with RUNX1. This dual capability of JMJD1C may influence enhancer-promoter contacts crucial for the expression of key leukemic genes regulated by RUNX1. Our findings demonstrate a previously unappreciated role for the non-catalytic function of JMJD1C in transcriptional regulation, underlying a mechanism shared by different types of leukemias.
Core Binding Factor Alpha 2 Subunit/genetics*
;
Humans
;
Leukemia, Myeloid, Acute/pathology*
;
Jumonji Domain-Containing Histone Demethylases/chemistry*
;
Gene Expression Regulation, Leukemic
;
Oxidoreductases, N-Demethylating/genetics*
;
Cell Line, Tumor

Result Analysis
Print
Save
E-mail