1.Bioinformatics analysis of potential biomarkers for primary osteoporosis
Jiacheng ZHAO ; Shiqi REN ; Qin ZHU ; Jiajia LIU ; Xiang ZHU ; Yang YANG
Chinese Journal of Tissue Engineering Research 2025;29(8):1741-1750
BACKGROUND:Primary osteoporosis has a high incidence,but the pathogenesis is not fully understood.Currently,there is a lack of effective early screening indicators and treatment programs. OBJECTIVE:To further explore the mechanism of primary osteoporosis through comprehensive bioinformatics analysis. METHODS:The primary osteoporosis data were obtained from the gene expression omnibus(GEO)database,and the differentially expressed genes were screened for Gene Ontology(GO)function and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis.In addition,the differentially expressed genes were subjected to protein-protein interaction network to determine the core genes related to primary osteoporosis,and the least absolute shrinkage and selection operator algorithm was used to identify and verify the primary osteoporosis-related biomarkers.Immune cell correlation analysis,gene enrichment analysis and drug target network analysis were performed.Finally,the biomarkers were validated using qPCR assay. RESULTS AND CONCLUSION:A total of 126 differentially expressed genes and 5 biomarkers including prostaglandins,epidermal growth factor receptor,mitogen-activated protein kinase 3,transforming growth factor B1,and retinoblastoma gene 1 were obtained in this study.GO analysis showed that differentially expressed genes were mainly concentrated in the cellular response to oxidative stress and the regulation of autophagy.KEGG analysis showed that autophagy and senescence pathways were mainly involved.Immunoassay of biomarkers showed that prostaglandins,retinoblastoma gene 1,and mitogen-activated protein kinase 3 were closely related to immune cells.Gene enrichment analysis showed that biomarkers were associated with immune-related pathways.Drug target network analysis showed that the five biomarkers were associated with primary osteoporosis drugs.The results of qPCR showed that the expression of prostaglandins,epidermal growth factor receptor,mitogen-activated protein kinase 3,and transforming growth factor B1 in the primary osteoporosis sample was significantly increased compared with the control sample(P<0.001),while the expression of retinoblastoma gene 1 in the primary osteoporosis sample was significantly decreased compared with the control sample(P<0.001).Overall,the study screened and validated five potential biomarkers of primary osteoporosis,providing a reference basis for further in-depth investigation of the pathogenesis,early screening and diagnosis,and targeted treatment of primary osteoporosis.
2.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
3.Influence of academic procrastination on college students' mobile phone dependence: the pathways of cognitive emotion regulation strategies and anxiety
Zimo YANG ; Jiacheng GAO ; Jiayi MA ; Jiangli JIAO
Sichuan Mental Health 2025;38(1):59-64
BackgroundIt has been shown that academic procrastination, cognitive emotion regulation strategies, anxiety and mobile phone dependence are closely related, but the detailed mechanism by which academic procrastination contributes to mobile phone dependence remains largely unclear and mediation analysis is currently lacking. ObjectiveTo explore the mediation role of cognitive emotion regulation strategies and anxiety in the relationship between academic procrastination and mobile phone dependence among college students, so as to provide references for the prevention and intervention of college students' mobile phone dependence. MethodsIn March 2023, 474 students from Xinjiang Normal University were selected by random sampling technique, and Mobile Phone Addiction Index (MPAI), Procrastination Assessment Scale-Students (PASS), Beck Anxiety Inventory (BAI) and Cognitive Emotion Regulation Questionnaire-Chinese version (CERQ-C) were used to conduct the survey. Pearson correlation analysis was adopted to examine the correlation among all variables, and Process 3.5 macro program was utilized to determine the mediation effect of cognitive emotion regulation strategies and anxiety on the relationship between academic procrastination and mobile phone dependence among college students. Results①PASS scores were positively correlated with the scores on CERQ-C negative cognitive emotion regulation strategy, BAI and MPAI (r=0.374, 0.229, 0.661, P<0.01), CERQ-C negative cognitive emotion regulation strategy scores were positively correlated with BAI and MPAI scores (r=0.372, 0.498, P<0.01), and BAI scores were positively correlated with MPAI scores (r=0.340, P<0.01). ② Both negative cognitive emotion regulation strategy and anxiety exerted an mediation effect on the relationship between academic procrastination and mobile phone dependence among college students, with an effect value of 0.094 (95% CI: 0.056~0.137) and 0.013 (95% CI: 0.001~0.029), and a chained mediation effect of negative cognitive emotion regulation strategy and anxiety on the relationship between academic procrastination and mobile phone dependence among college students was also documented, with an effect value of 0.015 (95% CI: 0.006~0.026). ConclusionAcademic procrastination is proved to be effective in predicting college students' mobile phone dependence both directly and indirectly through either separate or chained mediation of negative cognitive emotion regulation strategy and anxiety. [Funded by Social-Science Fund Project in Xinjiang (number, 2023CSH068); Scientific Research Projects of Universities in Xinjiang Uygur Autonomous Region (number, XJEDU2023P081)]
4.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
5.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
6.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
7.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
8.P4HA1 mediates YAP hydroxylation and accelerates collagen synthesis in temozolomide-resistant glioblastoma.
Xueru LI ; Gangfeng YU ; Xiao ZHONG ; Jiacheng ZHONG ; Xiangyu CHEN ; Qinglong CHEN ; Jinjiang XUE ; Xi YANG ; Xinchun ZHANG ; Yao LING ; Yun XIU ; Yaqi DENG ; Hongda LI ; Wei MO ; Yong ZHU ; Ting ZHANG ; Liangjun QIAO ; Song CHEN ; Fanghui LU
Chinese Medical Journal 2025;138(16):1991-2005
BACKGROUND:
Temozolomide (TMZ) resistance is a significant challenge in treating glioblastoma (GBM). Collagen remodeling has been shown to be a critical factor for therapy resistance in other cancers. This study aimed to investigate the mechanism of TMZ chemoresistance by GBM cells reprogramming collagens.
METHODS:
Key extracellular matrix components, including collagens, were examined in paired primary and recurrent GBM samples as well as in TMZ-treated spontaneous and grafted GBM murine models. Human GBM cell lines (U251, TS667) and mouse primary GBM cells were used for in vitro studies. RNA-sequencing analysis, chromatin immunoprecipitation, immunoprecipitation-mass spectrometry, and co-immunoprecipitation assays were conducted to explore the mechanisms involved in collagen accumulation. A series of in vitro and in vivo experiments were designed to assess the role of the collagen regulators prolyl 4-hydroxylase subunit alpha 1 (P4HA1) and yes-associated protein (YAP) in sensitizing GBM cells to TMZ.
RESULTS:
This study revealed that TMZ exposure significantly elevated collagen type I (COL I) expression in both GBM patients and murine models. Collagen accumulation sustained GBM cell survival under TMZ-induced stress, contributing to enhanced TMZ resistance. Mechanistically, P4HA1 directly binded to and hydroxylated YAP, preventing ubiquitination-mediated YAP degradation. Stabilized YAP robustly drove collagen type I alpha 1 ( COL1A1) transcription, leading to increased collagen deposition. Disruption of the P4HA1-YAP axis effectively reduced COL I deposition, sensitized GBM cells to TMZ, and significantly improved mouse survival.
CONCLUSION
P4HA1 maintained YAP-mediated COL1A1 transcription, leading to collagen accumulation and promoting chemoresistance in GBM.
Temozolomide
;
Humans
;
Glioblastoma/drug therapy*
;
Animals
;
Mice
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm/genetics*
;
YAP-Signaling Proteins
;
Hydroxylation
;
Dacarbazine/pharmacology*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Transcription Factors/metabolism*
;
Collagen/biosynthesis*
;
Collagen Type I/metabolism*
;
Prolyl Hydroxylases/metabolism*
;
Antineoplastic Agents, Alkylating/therapeutic use*
9.Impact of remote follow-up under an intelligent medical collaboration model on health promotion and clinical outcomes in patients with urinary calculi.
Yuting YANG ; Fengyan SONG ; Jiacheng HE ; Wenmin JI ; Yuyue XU ; Jing TAN ; Juan XUE
Journal of Central South University(Medical Sciences) 2025;50(5):876-887
OBJECTIVES:
Urinary calculi are characterized by a high recurrence rate, and patients' adherence to self-management after discharge directly affects health outcomes. Traditional offline follow-up models often face problems such as poor compliance and uneven allocation of medical resources, making it difficult to meet individualized health management needs. Remote follow-up provides a novel solution to optimize long-term management, improve health literacy, and enhance clinical outcomes. This study aims to evaluate the effect of remote follow-up under an intelligent medical collaborative model on quality of life and health-promoting lifestyle in patients with urinary calculi, and to assess its short-term impact on clinical outcomes.
METHODS:
A total of 118 patients with urinary calculi admitted to a tertiary hospital in Hunan Province between August and November 2024 were recruited and randomly assigned to a control group (n=59) or an intervention group (n=59). The control group received routine departmental follow-up, while the intervention group underwent remote follow-up based on an intelligent medical collaborative model for one month. Assessments were conducted before discharge (T0), 15 days after discharge (T1), and one month after discharge (T2), using the Wisconsin Stone Quality of Life Questionnaire and the Health-Promoting Lifestyle Profile. At T2, the incidence of forgotten ureteral stents (FUS), ureteral stent-related complications, unplanned readmissions, and patient satisfaction were evaluated.
RESULTS:
No significant differences were observed between groups at T0 in baseline characteristics or outcome measures (all P>0.05). At T1 and T2, the intervention group had significantly higher health-related quality of life scores than the control group (P<0.05). Generalized estimating equation (GEE) analysis showed significant between-group effects (Wald's χ2=22.961, P<0.001), time effects (Wald's χ2=23.065, P<0.001), and interaction effects (Wald's χ2=6.930, P<0.05). Similarly, at T1 and T2, the intervention group scored significantly higher on health-promoting lifestyle than the control group (P<0.05), with significant between-group effects (Wald's χ2=22.936, P<0.001), time effects (Wald's χ2=10.694, P<0.001), and interaction effects (Wald's χ2=18.921, P<0.05). No significant differences were found between groups in the incidence of FUS, ureteral stent-related complications, or unplanned readmissions (all P>0.05). Patient satisfaction was significantly higher in the intervention group (t=4.089, P<0.001).
CONCLUSIONS
Remote follow-up under an intelligent medical collaborative model helps improve quality of life, promote health-oriented lifestyles, and enhance patient satisfaction among individuals with urinary calculi.
Humans
;
Quality of Life
;
Male
;
Female
;
Urinary Calculi/therapy*
;
Health Promotion/methods*
;
Middle Aged
;
Adult
;
Follow-Up Studies
;
Treatment Outcome
10.NUP62 alleviates senescence and promotes the stemness of human dental pulp stem cells via NSD2-dependent epigenetic reprogramming.
Xiping WANG ; Li WANG ; Linxi ZHOU ; Lu CHEN ; Jiayi SHI ; Jing GE ; Sha TIAN ; Zihan YANG ; Yuqiong ZHOU ; Qihao YU ; Jiacheng JIN ; Chen DING ; Yihuai PAN ; Duohong ZOU
International Journal of Oral Science 2025;17(1):34-34
Stem cells play a crucial role in maintaining tissue regenerative capacity and homeostasis. However, mechanisms associated with stem cell senescence require further investigation. In this study, we conducted a proteomic analysis of human dental pulp stem cells (HDPSCs) obtained from individuals of various ages. Our findings showed that the expression of NUP62 was decreased in aged HDPSCs. We discovered that NUP62 alleviated senescence-associated phenotypes and enhanced differentiation potential both in vitro and in vivo. Conversely, the knocking down of NUP62 expression aggravated the senescence-associated phenotypes and impaired the proliferation and migration capacity of HDPSCs. Through RNA-sequence and decoding the epigenomic landscapes remodeled induced by NUP62 overexpression, we found that NUP62 helps alleviate senescence in HDPSCs by enhancing the nuclear transport of the transcription factor E2F1. This, in turn, stimulates the transcription of the epigenetic enzyme NSD2. Finally, the overexpression of NUP62 influences the H3K36me2 and H3K36me3 modifications of anti-aging genes (HMGA1, HMGA2, and SIRT6). Our results demonstrated that NUP62 regulates the fate of HDPSCs via NSD2-dependent epigenetic reprogramming.
Humans
;
Dental Pulp/cytology*
;
Nuclear Pore Complex Proteins/genetics*
;
Cellular Senescence/genetics*
;
Stem Cells/metabolism*
;
Epigenesis, Genetic
;
Cell Proliferation
;
Cell Differentiation
;
Histone-Lysine N-Methyltransferase/metabolism*
;
Cells, Cultured
;
Cellular Reprogramming
;
Cell Movement
;
Proteomics

Result Analysis
Print
Save
E-mail