1.Characterization of non-alcoholic fatty liver disease–related hepatocellular carcinoma on contrast-enhanced ultrasound with Sonazoid
Yi DONG ; Juan CHENG ; Yun-Lin HUANG ; Yi-Jie QIU ; Jia-Ying CAO ; Xiu-Yun LU ; Wen-Ping WANG ; Kathleen MÖLLER ; Christoph F. DIETRICH
Ultrasonography 2025;44(3):232-242
Purpose:
This study aimed to evaluate the contrast-enhanced ultrasound with Sonazoid (Sonazoid-CEUS) features of hepatocellular carcinoma (HCC) in patients with non-alcoholic fatty liver disease (NAFLD).
Methods:
In this retrospective study, patients who underwent surgical resection and were histopathologically diagnosed with NAFLD or cirrhosis-related HCC were included. All patients received Sonazoid-CEUS examinations within 1 week prior to hepatic surgery. The enhancement patterns of HCC lesions were evaluated and compared between the two groups according to the current World Federation for Ultrasound in Medicine and Biology guidelines. Multivariate logistic regression analysis was used to assess the correlations between Sonazoid-CEUS enhancement patterns and clinicopathologic characteristics.
Results:
From March 2022 to April 2023, a total of 151 patients with HCC were included, comprising 72 with NAFLD-related HCC and 79 with hepatitis B virus (HBV) cirrhosis–related HCC. On Sonazoid-CEUS, more than half of the NAFLD-related HCCs exhibited relatively early and mild washout within 60 seconds (54.2%, 39/72), whereas most HBV cirrhosis–related HCCs displayed washout between 60 and 120 seconds (46.8%, 37/79) or after 120 seconds (39.2%, 31/79) (P<0.001). In the patients with NAFLD-related HCC, multivariate analysis revealed that international normalized ratio (odds ratio [OR], 0.002; 95% confidence interval [CI], 0.000 to 0.899; P=0.046) and poor tumor differentiation (OR, 21.930; 95% CI, 1.960 to 245.319; P=0.012) were significantly associated with washout occurring within 60 seconds.
Conclusion
Characteristic Sonazoid-CEUS features are useful for diagnosing HCC in patients with NAFLD.
2.Effect of Anti-reflux Mucosal Ablation on Esophageal Motility in Patients With Gastroesophageal Reflux Disease: A Study Based on High-resolution Impedance Manometry
Chien-Chuan CHEN ; Chu-Kuang CHOU ; Ming-Ching YUAN ; Kun-Feng TSAI ; Jia-Feng WU ; Wei-Chi LIAO ; Han-Mo CHIU ; Hsiu-Po WANG ; Ming-Shiang WU ; Ping-Huei TSENG
Journal of Neurogastroenterology and Motility 2025;31(1):75-85
Background/Aims:
Anti-reflux mucosal ablation (ARMA) is a promising endoscopic intervention for proton pump inhibitor (PPI)-dependent gastroesophageal reflux disease (GERD). However, the effect of ARMA on esophageal motility remains unclear.
Methods:
Twenty patients with PPI-dependent GERD receiving ARMA were prospectively enrolled. Comprehensive self-report symptom questionnaires, endoscopy, 24-hour impedance-pH monitoring, and high-resolution impedance manometry were performed and analyzed before and 3 months after ARMA.
Results:
All ARMA procedures were performed successfully. Symptom scores, including GerdQ (11.16 ± 2.67 to 9.11 ± 2.64, P = 0.026) and reflux symptom index (11.63 ± 5.62 to 6.11 ± 3.86, P = 0.001), improved significantly, while 13 patients (65%) reported discontinuation of PPI. Total acid exposure time (5.84 ± 4.63% to 2.83 ± 3.41%, P = 0.024) and number of reflux episodes (73.05 ± 19.34 to 37.55 ± 22.71, P < 0.001) decreased significantly after ARMA. Improved esophagogastric junction (EGJ) barrier function, including increased lower esophageal sphincter resting pressure (13.89 ± 10.78 mmHg to 21.68 ± 11.5 mmHg, P = 0.034), 4-second integrated relaxation pressure (5.75 ± 6.42 mmHg to 9.99 ± 5.89 mmHg, P = 0.020), and EGJ-contractile integral(16.42 ± 16.93 mmHg · cm to 31.95 ± 21.25 mmHg · cm, P = 0.016), were observed. Esophageal body contractility also increased significantly (distal contractile integral, 966.85 ± 845.84 mmHg · s · cm to 1198.8 ± 811.74 mmHg · s · cm, P = 0.023). Patients with symptom improvement had better pre-AMRA esophageal body contractility.
Conclusions
ARMA effectively improves symptoms and reflux burden, EGJ barrier function, and esophageal body contractility in patients with PPIdependent GERD during short-term evaluation. Longer follow-up to clarify the sustainability of ARMA is needed.
3.Characterization of non-alcoholic fatty liver disease–related hepatocellular carcinoma on contrast-enhanced ultrasound with Sonazoid
Yi DONG ; Juan CHENG ; Yun-Lin HUANG ; Yi-Jie QIU ; Jia-Ying CAO ; Xiu-Yun LU ; Wen-Ping WANG ; Kathleen MÖLLER ; Christoph F. DIETRICH
Ultrasonography 2025;44(3):232-242
Purpose:
This study aimed to evaluate the contrast-enhanced ultrasound with Sonazoid (Sonazoid-CEUS) features of hepatocellular carcinoma (HCC) in patients with non-alcoholic fatty liver disease (NAFLD).
Methods:
In this retrospective study, patients who underwent surgical resection and were histopathologically diagnosed with NAFLD or cirrhosis-related HCC were included. All patients received Sonazoid-CEUS examinations within 1 week prior to hepatic surgery. The enhancement patterns of HCC lesions were evaluated and compared between the two groups according to the current World Federation for Ultrasound in Medicine and Biology guidelines. Multivariate logistic regression analysis was used to assess the correlations between Sonazoid-CEUS enhancement patterns and clinicopathologic characteristics.
Results:
From March 2022 to April 2023, a total of 151 patients with HCC were included, comprising 72 with NAFLD-related HCC and 79 with hepatitis B virus (HBV) cirrhosis–related HCC. On Sonazoid-CEUS, more than half of the NAFLD-related HCCs exhibited relatively early and mild washout within 60 seconds (54.2%, 39/72), whereas most HBV cirrhosis–related HCCs displayed washout between 60 and 120 seconds (46.8%, 37/79) or after 120 seconds (39.2%, 31/79) (P<0.001). In the patients with NAFLD-related HCC, multivariate analysis revealed that international normalized ratio (odds ratio [OR], 0.002; 95% confidence interval [CI], 0.000 to 0.899; P=0.046) and poor tumor differentiation (OR, 21.930; 95% CI, 1.960 to 245.319; P=0.012) were significantly associated with washout occurring within 60 seconds.
Conclusion
Characteristic Sonazoid-CEUS features are useful for diagnosing HCC in patients with NAFLD.
4.Characterization of non-alcoholic fatty liver disease–related hepatocellular carcinoma on contrast-enhanced ultrasound with Sonazoid
Yi DONG ; Juan CHENG ; Yun-Lin HUANG ; Yi-Jie QIU ; Jia-Ying CAO ; Xiu-Yun LU ; Wen-Ping WANG ; Kathleen MÖLLER ; Christoph F. DIETRICH
Ultrasonography 2025;44(3):232-242
Purpose:
This study aimed to evaluate the contrast-enhanced ultrasound with Sonazoid (Sonazoid-CEUS) features of hepatocellular carcinoma (HCC) in patients with non-alcoholic fatty liver disease (NAFLD).
Methods:
In this retrospective study, patients who underwent surgical resection and were histopathologically diagnosed with NAFLD or cirrhosis-related HCC were included. All patients received Sonazoid-CEUS examinations within 1 week prior to hepatic surgery. The enhancement patterns of HCC lesions were evaluated and compared between the two groups according to the current World Federation for Ultrasound in Medicine and Biology guidelines. Multivariate logistic regression analysis was used to assess the correlations between Sonazoid-CEUS enhancement patterns and clinicopathologic characteristics.
Results:
From March 2022 to April 2023, a total of 151 patients with HCC were included, comprising 72 with NAFLD-related HCC and 79 with hepatitis B virus (HBV) cirrhosis–related HCC. On Sonazoid-CEUS, more than half of the NAFLD-related HCCs exhibited relatively early and mild washout within 60 seconds (54.2%, 39/72), whereas most HBV cirrhosis–related HCCs displayed washout between 60 and 120 seconds (46.8%, 37/79) or after 120 seconds (39.2%, 31/79) (P<0.001). In the patients with NAFLD-related HCC, multivariate analysis revealed that international normalized ratio (odds ratio [OR], 0.002; 95% confidence interval [CI], 0.000 to 0.899; P=0.046) and poor tumor differentiation (OR, 21.930; 95% CI, 1.960 to 245.319; P=0.012) were significantly associated with washout occurring within 60 seconds.
Conclusion
Characteristic Sonazoid-CEUS features are useful for diagnosing HCC in patients with NAFLD.
5.Progress on antisense oligonucleotide in the field of antibacterial therapy
Jia LI ; Xiao-lu HAN ; Shi-yu SONG ; Jin-tao LIN ; Zhi-qiang TANG ; Zeng-ming WANG ; Liang XU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2025;60(2):337-347
With the widespread use of antibiotics, drug-resistant bacterial infections have become a significant threat to human health. Finding new antibacterial strategies that can effectively control drug-resistant bacterial infections has become an urgent task. Unlike small molecule drugs that target bacterial proteins, antisense oligonucleotide (ASO) can target genes related to bacterial resistance, pathogenesis, growth, reproduction and biofilm formation. By regulating the expression of these genes, ASO can inhibit or kill bacteria, providing a novel approach for the development of antibacterial drugs. To overcome the challenge of delivering antisense oligonucleotide into bacterial cells, various drug delivery systems have been applied in this field, including cell-penetrating peptides, lipid nanoparticles and inorganic nanoparticles, which have injected new momentum into the development of antisense oligonucleotide in the antibacterial realm. This review summarizes the current development of small nucleic acid drugs, the antibacterial mechanisms, targets, sequences and delivery vectors of antisense oligonucleotide, providing a reference for the research and development of antisense oligonucleotide in the treatment of bacterial infections.
6.Effect of Anti-reflux Mucosal Ablation on Esophageal Motility in Patients With Gastroesophageal Reflux Disease: A Study Based on High-resolution Impedance Manometry
Chien-Chuan CHEN ; Chu-Kuang CHOU ; Ming-Ching YUAN ; Kun-Feng TSAI ; Jia-Feng WU ; Wei-Chi LIAO ; Han-Mo CHIU ; Hsiu-Po WANG ; Ming-Shiang WU ; Ping-Huei TSENG
Journal of Neurogastroenterology and Motility 2025;31(1):75-85
Background/Aims:
Anti-reflux mucosal ablation (ARMA) is a promising endoscopic intervention for proton pump inhibitor (PPI)-dependent gastroesophageal reflux disease (GERD). However, the effect of ARMA on esophageal motility remains unclear.
Methods:
Twenty patients with PPI-dependent GERD receiving ARMA were prospectively enrolled. Comprehensive self-report symptom questionnaires, endoscopy, 24-hour impedance-pH monitoring, and high-resolution impedance manometry were performed and analyzed before and 3 months after ARMA.
Results:
All ARMA procedures were performed successfully. Symptom scores, including GerdQ (11.16 ± 2.67 to 9.11 ± 2.64, P = 0.026) and reflux symptom index (11.63 ± 5.62 to 6.11 ± 3.86, P = 0.001), improved significantly, while 13 patients (65%) reported discontinuation of PPI. Total acid exposure time (5.84 ± 4.63% to 2.83 ± 3.41%, P = 0.024) and number of reflux episodes (73.05 ± 19.34 to 37.55 ± 22.71, P < 0.001) decreased significantly after ARMA. Improved esophagogastric junction (EGJ) barrier function, including increased lower esophageal sphincter resting pressure (13.89 ± 10.78 mmHg to 21.68 ± 11.5 mmHg, P = 0.034), 4-second integrated relaxation pressure (5.75 ± 6.42 mmHg to 9.99 ± 5.89 mmHg, P = 0.020), and EGJ-contractile integral(16.42 ± 16.93 mmHg · cm to 31.95 ± 21.25 mmHg · cm, P = 0.016), were observed. Esophageal body contractility also increased significantly (distal contractile integral, 966.85 ± 845.84 mmHg · s · cm to 1198.8 ± 811.74 mmHg · s · cm, P = 0.023). Patients with symptom improvement had better pre-AMRA esophageal body contractility.
Conclusions
ARMA effectively improves symptoms and reflux burden, EGJ barrier function, and esophageal body contractility in patients with PPIdependent GERD during short-term evaluation. Longer follow-up to clarify the sustainability of ARMA is needed.
7.Characterization of non-alcoholic fatty liver disease–related hepatocellular carcinoma on contrast-enhanced ultrasound with Sonazoid
Yi DONG ; Juan CHENG ; Yun-Lin HUANG ; Yi-Jie QIU ; Jia-Ying CAO ; Xiu-Yun LU ; Wen-Ping WANG ; Kathleen MÖLLER ; Christoph F. DIETRICH
Ultrasonography 2025;44(3):232-242
Purpose:
This study aimed to evaluate the contrast-enhanced ultrasound with Sonazoid (Sonazoid-CEUS) features of hepatocellular carcinoma (HCC) in patients with non-alcoholic fatty liver disease (NAFLD).
Methods:
In this retrospective study, patients who underwent surgical resection and were histopathologically diagnosed with NAFLD or cirrhosis-related HCC were included. All patients received Sonazoid-CEUS examinations within 1 week prior to hepatic surgery. The enhancement patterns of HCC lesions were evaluated and compared between the two groups according to the current World Federation for Ultrasound in Medicine and Biology guidelines. Multivariate logistic regression analysis was used to assess the correlations between Sonazoid-CEUS enhancement patterns and clinicopathologic characteristics.
Results:
From March 2022 to April 2023, a total of 151 patients with HCC were included, comprising 72 with NAFLD-related HCC and 79 with hepatitis B virus (HBV) cirrhosis–related HCC. On Sonazoid-CEUS, more than half of the NAFLD-related HCCs exhibited relatively early and mild washout within 60 seconds (54.2%, 39/72), whereas most HBV cirrhosis–related HCCs displayed washout between 60 and 120 seconds (46.8%, 37/79) or after 120 seconds (39.2%, 31/79) (P<0.001). In the patients with NAFLD-related HCC, multivariate analysis revealed that international normalized ratio (odds ratio [OR], 0.002; 95% confidence interval [CI], 0.000 to 0.899; P=0.046) and poor tumor differentiation (OR, 21.930; 95% CI, 1.960 to 245.319; P=0.012) were significantly associated with washout occurring within 60 seconds.
Conclusion
Characteristic Sonazoid-CEUS features are useful for diagnosing HCC in patients with NAFLD.
8.Effect of Anti-reflux Mucosal Ablation on Esophageal Motility in Patients With Gastroesophageal Reflux Disease: A Study Based on High-resolution Impedance Manometry
Chien-Chuan CHEN ; Chu-Kuang CHOU ; Ming-Ching YUAN ; Kun-Feng TSAI ; Jia-Feng WU ; Wei-Chi LIAO ; Han-Mo CHIU ; Hsiu-Po WANG ; Ming-Shiang WU ; Ping-Huei TSENG
Journal of Neurogastroenterology and Motility 2025;31(1):75-85
Background/Aims:
Anti-reflux mucosal ablation (ARMA) is a promising endoscopic intervention for proton pump inhibitor (PPI)-dependent gastroesophageal reflux disease (GERD). However, the effect of ARMA on esophageal motility remains unclear.
Methods:
Twenty patients with PPI-dependent GERD receiving ARMA were prospectively enrolled. Comprehensive self-report symptom questionnaires, endoscopy, 24-hour impedance-pH monitoring, and high-resolution impedance manometry were performed and analyzed before and 3 months after ARMA.
Results:
All ARMA procedures were performed successfully. Symptom scores, including GerdQ (11.16 ± 2.67 to 9.11 ± 2.64, P = 0.026) and reflux symptom index (11.63 ± 5.62 to 6.11 ± 3.86, P = 0.001), improved significantly, while 13 patients (65%) reported discontinuation of PPI. Total acid exposure time (5.84 ± 4.63% to 2.83 ± 3.41%, P = 0.024) and number of reflux episodes (73.05 ± 19.34 to 37.55 ± 22.71, P < 0.001) decreased significantly after ARMA. Improved esophagogastric junction (EGJ) barrier function, including increased lower esophageal sphincter resting pressure (13.89 ± 10.78 mmHg to 21.68 ± 11.5 mmHg, P = 0.034), 4-second integrated relaxation pressure (5.75 ± 6.42 mmHg to 9.99 ± 5.89 mmHg, P = 0.020), and EGJ-contractile integral(16.42 ± 16.93 mmHg · cm to 31.95 ± 21.25 mmHg · cm, P = 0.016), were observed. Esophageal body contractility also increased significantly (distal contractile integral, 966.85 ± 845.84 mmHg · s · cm to 1198.8 ± 811.74 mmHg · s · cm, P = 0.023). Patients with symptom improvement had better pre-AMRA esophageal body contractility.
Conclusions
ARMA effectively improves symptoms and reflux burden, EGJ barrier function, and esophageal body contractility in patients with PPIdependent GERD during short-term evaluation. Longer follow-up to clarify the sustainability of ARMA is needed.
9.Characterization of non-alcoholic fatty liver disease–related hepatocellular carcinoma on contrast-enhanced ultrasound with Sonazoid
Yi DONG ; Juan CHENG ; Yun-Lin HUANG ; Yi-Jie QIU ; Jia-Ying CAO ; Xiu-Yun LU ; Wen-Ping WANG ; Kathleen MÖLLER ; Christoph F. DIETRICH
Ultrasonography 2025;44(3):232-242
Purpose:
This study aimed to evaluate the contrast-enhanced ultrasound with Sonazoid (Sonazoid-CEUS) features of hepatocellular carcinoma (HCC) in patients with non-alcoholic fatty liver disease (NAFLD).
Methods:
In this retrospective study, patients who underwent surgical resection and were histopathologically diagnosed with NAFLD or cirrhosis-related HCC were included. All patients received Sonazoid-CEUS examinations within 1 week prior to hepatic surgery. The enhancement patterns of HCC lesions were evaluated and compared between the two groups according to the current World Federation for Ultrasound in Medicine and Biology guidelines. Multivariate logistic regression analysis was used to assess the correlations between Sonazoid-CEUS enhancement patterns and clinicopathologic characteristics.
Results:
From March 2022 to April 2023, a total of 151 patients with HCC were included, comprising 72 with NAFLD-related HCC and 79 with hepatitis B virus (HBV) cirrhosis–related HCC. On Sonazoid-CEUS, more than half of the NAFLD-related HCCs exhibited relatively early and mild washout within 60 seconds (54.2%, 39/72), whereas most HBV cirrhosis–related HCCs displayed washout between 60 and 120 seconds (46.8%, 37/79) or after 120 seconds (39.2%, 31/79) (P<0.001). In the patients with NAFLD-related HCC, multivariate analysis revealed that international normalized ratio (odds ratio [OR], 0.002; 95% confidence interval [CI], 0.000 to 0.899; P=0.046) and poor tumor differentiation (OR, 21.930; 95% CI, 1.960 to 245.319; P=0.012) were significantly associated with washout occurring within 60 seconds.
Conclusion
Characteristic Sonazoid-CEUS features are useful for diagnosing HCC in patients with NAFLD.
10.Mechanisms and Molecular Networks of Hypoxia-regulated Tumor Cell Dormancy
Mao ZHAO ; Jin-Qiu FENG ; Ze-Qi GAO ; Ping WANG ; Jia FU
Progress in Biochemistry and Biophysics 2025;52(9):2267-2279
Dormant tumor cells constitute a population of cancer cells that reside in a non-proliferative or low-proliferative state, typically arrested in the G0/G1 phase and exhibiting minimal mitotic activity. These cells are commonly observed across multiple cancer types, including breast, lung, and ovarian cancers, and represent a central cellular component of minimal residual disease (MRD) following surgical resection of the primary tumor. Dormant cells are closely associated with long-term clinical latency and late-stage relapse. Due to their quiescent nature, dormant cells are intrinsically resistant to conventional therapies—such as chemotherapy and radiotherapy—that preferentially target rapidly dividing cells. In addition, they display enhanced anti-apoptotic capacity and immune evasion, rendering them particularly difficult to eradicate. More critically, in response to microenvironmental changes or activation of specific signaling pathways, dormant cells can re-enter the cell cycle and initiate metastatic outgrowth or tumor recurrence. This ability to escape dormancy underscores their clinical threat and positions their effective detection and elimination as a major challenge in contemporary cancer treatment. Hypoxia, a hallmark of the solid tumor microenvironment, has been widely recognized as a potent inducer of tumor cell dormancy. However, the molecular mechanisms by which tumor cells sense and respond to hypoxic stress—initiating the transition into dormancy—remain poorly defined. In particular, the lack of a systems-level understanding of the dynamic and multifactorial regulatory landscape has impeded the identification of actionable targets and constrained the development of effective therapeutic strategies. Accumulating evidence indicates that hypoxia-induced dormancy tumor cells are accompanied by a suite of adaptive phenotypes, including cell cycle arrest, global suppression of protein synthesis, metabolic reprogramming, autophagy activation, resistance to apoptosis, immune evasion, and therapy tolerance. These changes are orchestrated by multiple converging signaling pathways—such as PI3K-AKT-mTOR, Ras-Raf-MEK-ERK, and AMPK—that together constitute a highly dynamic and interconnected regulatory network. While individual pathways have been studied in depth, most investigations remain reductionist and fail to capture the temporal progression and network-level coordination underlying dormancy transitions. Systems biology offers a powerful framework to address this complexity. By integrating high-throughput multi-omics data—such as transcriptomics and proteomics—researchers can reconstruct global regulatory networks encompassing the key signaling axes involved in dormancy regulation. These networks facilitate the identification of core regulatory modules and elucidate functional interactions among key effectors. When combined with dynamic modeling approaches—such as ordinary differential equations—these frameworks enable the simulation of temporal behaviors of critical signaling nodes, including phosphorylated AMPK (p-AMPK), phosphorylated S6 (p-S6), and the p38/ERK activity ratio, providing insights into how their dynamic changes govern transitions between proliferation and dormancy. Beyond mapping trajectories from proliferation to dormancy and from shallow to deep dormancy, such dynamic regulatory models support topological analyses to identify central hubs and molecular switches. Key factors—such as NR2F1, mTORC1, ULK1, HIF-1α, and DYRK1A—have emerged as pivotal nodes within these networks and represent promising therapeutic targets. Constructing an integrative, systems-level regulatory framework—anchored in multi-pathway coordination, omics-layer integration, and dynamic modeling—is thus essential for decoding the architecture and progression of tumor dormancy. Such a framework not only advances mechanistic understanding but also lays the foundation for precision therapies targeting dormant tumor cells during the MRD phase, addressing a critical unmet need in cancer management.

Result Analysis
Print
Save
E-mail