1.Establishment of a population pharmacokinetic model for linezolid in neonates with sepsis
Zong-Tai FENG ; Lian TANG ; Zu-Ming YANG ; Chu-Chu GAO ; Jia-Hui LI ; Yan CAI ; Lu-Fen DUAN
Chinese Journal of Contemporary Pediatrics 2024;26(11):1162-1168
Objective To establish the pharmacokinetic model of linezolid in neonates,and to optimize the administration regimen. Methods A prospective study was conducted among 64 neonates with sepsis who received linezolid as anti-infective therapy,and liquid chromatography-tandem mass spectrometry was used to measure the plasma concentration of the drug. Clinical data were collected,and nonlinear mixed effects modeling was used to establish a population pharmacokinetic (PPK) model. Monte Carlo simulation and evaluation was performed for the optimal administration regimen of children with different features. Results The pharmacokinetic properties of linezolid in neonates could be described by a single-compartment model with primary elimination,and the population typical values for apparent volume of distribution and clearance rate were 0.79 L and 0.34 L/h,respectively. The results of goodness of fit,visualization verification,and the Bootstrap method showed that the model was robust with reliable results of parameter estimation and prediction. Monte Carlo simulation results showed that the optimal administration regimen for linezolid in neonates was as follows:6 mg/kg,q8h,at 28 weeks of gestational age (GA);8 mg/kg,q8h,at 32 weeks of GA;9 mg/kg,q8h,at 34-37 weeks of GA;11 mg/kg,q8h,at 40 weeks of GA. Conclusions The PPK model established in this study can provide a reference for individual administration of linezolid in neonates. GA and body weight at the time of administration are significant influencing factors for the clearance rate of linezolid in neonates.
2.Development and validation of a dynamic prediction tool for post-endo-scopic retrograde cholangiopancreatography early biliary tract infection in patients with choledocholithiasis
Peng LI ; Chao LIANG ; Jia-Feng YAN ; Chun-Hui GAO ; Zhi-Jie MA ; Zhan-Tao XIE ; Ming-Jie SUN
Chinese Journal of Infection Control 2024;23(6):692-699
Objective To develop a prediction tool for post-endoscopic retrograde cholangiopancreatography(ER-CP)early biliary tract infection(PEEBI)in patients with choledocholithiasis,and assist clinical decision-making be-fore ERCP and early personalized intervention after ERCP.Methods An observational bidirectional cohort study was adopted to select inpatients with choledocholithiasis who underwent ERCP in a hospital.Directed acyclic graph(DAGs)and the least absolute shrinkage and selection operator(LASSO)were used to predict PEEBI based on lo-gistic regression,and the models were compared and validated internally and externally.Results From January 1,2020 to September 30,2023,a total of 2 121 patients with choledocholithiasis underwent ERCP were enrolled,of whom 77(3.6%)developed PEEBI,mostly in the first 2 days after surgery(66.2%).The major influencing fac-tors for PEEBI were non-iatrogenic patient-related factors,namely diabetes mellitus(OR=2.43,95%CI:1.14-4.85),bile duct malignancy(OR=3.95,95%CI:1.74-8.31)and duodenal papillary diverticulum(OR=4.39,95%CI:1.86-9.52).Compared with the LASSO model,the DAGs model showed higher ability(3.0%)in com-prehensive discrimination(P=0.007),as well as good differentiation performance(D=0.133,P=0.894)and cal-ibration performance(x2=5.499,P=0.703)in external validation.Conclusion The DAGs model constructed in this study has good predictive performance.With the help of this tool,targeted early preventive measures in clinical practice can be taken to reduce the occurrence of PEEBI.
3.Effects of Different Sequential Enzymatic Cleavage of Trypsin and LysC on Proteomic Sample Preparation
Rui-Dong LI ; Min WANG ; Lu-Lu WANG ; Ming-Ya ZHANG ; Yuan GAO ; Min-Jia TAN ; Fang GUO ; Lin-Hui ZHAI
Chinese Journal of Biochemistry and Molecular Biology 2024;40(11):1618-1626
In mass spectrometry-based proteomics experiments,achieving high-throughput and efficientproteolytic digestion is crucial to ensure optimal protein cleavage and enhance the depth of protein identi-fication (including the number of identified proteins and the coverage of protein amino acid sequences) .Trypsin is the most widely used protease in mass spectrometry-based proteomics due to its ability to spe-cifically cleave the carboxyl terminus of arginine and lysine.However,it was found that Trypsin has some missed enzymatic efficiency for the cleavage of lysine residues.Therefore,in actual proteomics sample preparation,a combination of Trypsin and LysC will be used to ensure adequate cleavage of lysine resi-dues.Our study revealed that the commonly employed LysC-Trypsin tandem cleavage method exerts an impact on the enzymatic cleavage of protein samples by Trypsin due to the subsequent cleavage of Trypsin by initially added LysC.Consequently,we adjusted the order of LysC and Trypsin tandem digestion,with Trypsin cleavage being performed first followed by the addition of LysC to target any missed lysine resi-dues.We comprehensively compared and analyzed three distinct sequential digestion methods,namely Trypsin-Trypsin (T-T),LysC-Trypsin (L-T),and Trypsin-LysC (T-L),in terms of their effects on pro-tein sample preparation quality.The results demonstrated that the Trypsin-LysC sequential digestion ap-proach not only minimizes missed protein lysine/arginine cleavage sites without increasing experimental costs,at the same time yielding peptides with a moderate amino acid sequence length.The use of Tryp-sin-LysC digestion enhances the adsorption and separation of peptide samples in RP-HPLC,as well as improves the depth of protein detection and amino acid sequence coverage during tandem mass spectrome-try analysis.This research work offers a novel technical solution and serves as a valuable reference for proteome sample preparation.
4.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
5.Emerging role of Jumonji domain-containing protein D3 in inflammatory diseases
Li XIANG ; Chen RU-YI ; Shi JIN-JIN ; Li CHANG-YUN ; Liu YAN-JUN ; Gao CHANG ; Gao MING-RONG ; Zhang SHUN ; Lu JIAN-FEI ; Cao JIA-FENG ; Yang GUAN-JUN ; Chen JIONG
Journal of Pharmaceutical Analysis 2024;14(9):1282-1300
Jumonji domain-containing protein D3(JMJD3)is a 2-oxoglutarate-dependent dioxygenase that specif-ically removes transcriptional repression marks di-and tri-methylated groups from lysine 27 on histone 3(H3K27me2/3).The erasure of these marks leads to the activation of some associated genes,thereby influencing various biological processes,such as development,differentiation,and immune response.However,comprehensive descriptions regarding the relationship between JMJD3 and inflammation are lacking.Here,we provide a comprehensive overview of JMJD3,including its structure,functions,and involvement in inflammatory pathways.In addition,we summarize the evidence supporting JMJD3's role in several inflammatory diseases,as well as the potential therapeutic applications of JMJD3 inhibitors.Additionally,we also discuss the challenges and opportunities associated with investigating the functions of JMJD3 and developing targeted inhibitors and propose feasible solutions to provide valuable insights into the functional exploration and discovery of potential drugs targeting JMJD3 for inflammatory diseases.
6.Effect of brain-computer interface based on visual, auditory and motor feedback combined with transcranial direct current stimulation on upper limb function in stroke patients
Ling GAO ; Fengming CHU ; Fan JIA ; Jie CHEN ; Ming ZHANG
Chinese Journal of Rehabilitation Theory and Practice 2024;30(2):202-209
ObjectiveTo explore the effect of brain-computer interface (BCI) based on visual, auditory and motor feedback combined with transcranial direct current stimulation (tDCS) on upper limb function in stroke patients. MethodsFrom March to October, 2023, 45 stroke inpatients in Xuzhou Rehabilitation Hospital and Xuzhou Central Hospital were divided into BCI group (n = 15), tDCS group (n = 15) and combined group (n = 15) randomly. All the groups received routine rehabilitation, while BCI group received BCI training, tDCS group received tDCS, while the combined group received tDCS and followed by BCI training immediately, for four weeks. They were assessed with Fugl-Meyer Assessment-Upper Extremities (FMA-UE), Action Research Arm Test (ARAT), modified Barthel Index (MBI) and delta-alpha ratio (DAR) and power ratio index (PRI) of electroencephalogram before and after treatment. ResultsThe scores of FMA-UE, ARAT and MBI increased in all the groups after treatment (|t| > 5.350, P < 0.001), and all these indexes were the best in the combined group (F > 3.366, P < 0.05); while DAR and PRI decreased in all the groups (|t| > 2.208 , P < 0.05), they were the best in the combined group (F > 5.224, P < 0.01). ConclusionBCI based on visual, auditory and motor feedback combined with tDCS can further improve the motor function of upper limbs and the activities of daily living of stroke patients.
7.Mechanism of salvianolic acid B protecting H9C2 from OGD/R injury based on mitochondrial fission and fusion
Zi-xin LIU ; Gao-jie XIN ; Yue YOU ; Yuan-yuan CHEN ; Jia-ming GAO ; Ling-mei LI ; Hong-xu MENG ; Xiao HAN ; Lei LI ; Ye-hao ZHANG ; Jian-hua FU ; Jian-xun LIU
Acta Pharmaceutica Sinica 2024;59(2):374-381
This study aims to investigate the effect of salvianolic acid B (Sal B), the active ingredient of Salvia miltiorrhiza, on H9C2 cardiomyocytes injured by oxygen and glucose deprivation/reperfusion (OGD/R) through regulating mitochondrial fission and fusion. The process of myocardial ischemia-reperfusion injury was simulated by establishing OGD/R model. The cell proliferation and cytotoxicity detection kit (cell counting kit-8, CCK-8) was used to detect cell viability; the kit method was used to detect intracellular reactive oxygen species (ROS), total glutathione (t-GSH), nitric oxide (NO) content, protein expression levels of mitochondrial fission and fusion, apoptosis-related detection by Western blot. Mitochondrial permeability transition pore (MPTP) detection kit and Hoechst 33342 fluorescence was used to observe the opening level of MPTP, and molecular docking technology was used to determine the molecular target of Sal B. The results showed that relative to control group, OGD/R injury reduced cell viability, increased the content of ROS, decreased the content of t-GSH and NO. Furthermore, OGD/R injury increased the protein expression levels of dynamin-related protein 1 (Drp1), mitofusions 2 (Mfn2), Bcl-2 associated X protein (Bax) and cysteinyl aspartate specific proteinase 3 (caspase 3), and decreased the protein expression levels of Mfn1, increased MPTP opening level. Compared with the OGD/R group, it was observed that Sal B had a protective effect at concentrations ranging from 6.25 to 100 μmol·L-1. Sal B decreased the content of ROS, increased the content of t-GSH and NO, and Western blot showed that Sal B decreased the protein expression levels of Drp1, Mfn2, Bax and caspase 3, increased the protein expression level of Mfn1, and decreased the opening level of MPTP. In summary, Sal B may inhibit the opening of MPTP, reduce cell apoptosis and reduce OGD/R damage in H9C2 cells by regulating the balance of oxidation and anti-oxidation, mitochondrial fission and fusion, thereby providing a scientific basis for the use of Sal B in the treatment of myocardial ischemia reperfusion injury.
8.Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
Shou-Wu WU ; Shao-Kun LIN ; Zhong-Zhu NIAN ; Xin-Wen WANG ; Wei-Nian LIN ; Li-Ming ZHUANG ; Zhi-Sheng WU ; Zhi-Wei HUANG ; A-Min WANG ; Ni-Li GAO ; Jia-Wen CHEN ; Wen-Ting YUAN ; Kai-Xian LU ; Jun LIAO
Progress in Biochemistry and Biophysics 2024;51(9):2182-2193
ObjectiveTo investigate the effect of mucin 1 (MUC1) on the proliferation and apoptosis of nasopharyngeal carcinoma (NPC) and its regulatory mechanism. MethodsThe 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital. The expression of MUC1 was measured by real-time quantitative PCR (qPCR) in the patients with PNC. The 5-8F and HNE1 cells were transfected with siRNA control (si-control) or siRNA targeting MUC1 (si-MUC1). Cell proliferation was analyzed by cell counting kit-8 and colony formation assay, and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells. The qPCR and ELISA were executed to analyze the levels of TNF-α and IL-6. Western blot was performed to measure the expression of MUC1, NF-кB and apoptosis-related proteins (Bax and Bcl-2). ResultsThe expression of MUC1 was up-regulated in the NPC tissues, and NPC patients with the high MUC1 expression were inclined to EBV infection, growth and metastasis of NPC. Loss of MUC1 restrained malignant features, including the proliferation and apoptosis, downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells. ConclusionDownregulation of MUC1 restrained biological characteristics of malignancy, including cell proliferation and apoptosis, by inactivating NF-κB signaling pathway in NPC.
9.Identification and anti-inflammatory activity of chemical constituents and a pair of new monoterpenoid enantiomers from the fruits of Litsea cubeba
Mei-lin LU ; Wan-feng HUANG ; Yu-ming HE ; Bao-lin WANG ; Fu-hong YUAN ; Ting ZHANG ; Qi-ming PAN ; Xin-ya XU ; Jia HE ; Shan HAN ; Qin-qin WANG ; Shi-lin YANG ; Hong-wei GAO
Acta Pharmaceutica Sinica 2024;59(5):1348-1356
Eighteen compounds were isolated from the methanol extract of the fruits of
10.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.

Result Analysis
Print
Save
E-mail