1.Processing History and Modern Research of Jianghuanglian: A Review
Ying LI ; Yun WANG ; Zhe JIA ; Lin YAN ; Min JIN ; Cun ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):275-282
Jianghuanglian is one of the representative processed products of Coptidis Rhizoma for treating cold syndrome with drugs of heat nature, and ginger is used to restrict the bitter cold of Coptidis Rhizoma, which can be traced back to Bojifang, and it is suitable for stagnation of damp-heat in middle-jiao, cold-heat mutual knots and other symptoms. Jianghuanglian retains the alkaloids, phenylpropanoids and flavonoids of Coptidis Rhizoma, and also introduces gingerol components such as 6-gingerol in ginger, which has pharmacological activities such as anti-inflammatory, antibacterial, anti-tumor, and improving gastrointestinal function. The 2020 edition of Chinese Pharmacopoeia and many local processing specifications have included the traditional processing process and quality standards of Jianghuanglian, but the specific process parameters and quality standards are incomplete, which limits the production and clinical application of this processed product. By summarizing the processing history, process research, quality evaluation, pharmacodynamic and medicinal property changes and application of Jianghuanglian in the past 20 years, there are differences in the processing methods and standards in various provinces and cities, which are mainly reflected in the preparation method, dosage, processing process and quantitative standards of ginger juice. In addition, there are also certain differences in the changes of the main components of Jianghuanglian prepared from ginger or dried ginger, as well as their efficacy and medicinal properties. The research on the processing process of Jianghuanglian plays an important role in improving its quality standards, and this review can provide a reference for improving the quality evaluation system of Jianghuanglian.
2.Four new sesquiterpenoids from the roots of Atractylodes macrocephala
Gang-gang ZHOU ; Jia-jia LIU ; Ji-qiong WANG ; Hui LIU ; Zhi-Hua LIAO ; Guo-wei WANG ; Min CHEN ; Fan-cheng MENG
Acta Pharmaceutica Sinica 2025;60(1):179-184
The chemical constituents in dried roots of
3.Applications of EEG Biomarkers in The Assessment of Disorders of Consciousness
Zhong-Peng WANG ; Jia LIU ; Long CHEN ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(4):899-914
Disorders of consciousness (DOC) are pathological conditions characterized by severely suppressed brain function and the persistent interruption or loss of consciousness. Accurate diagnosis and evaluation of DOC are prerequisites for precise treatment. Traditional assessment methods are primarily based on behavioral scales, which are inherently subjective and rely on observable behaviors. Moreover, traditional methods have a high misdiagnosis rate, particularly in distinguishing minimally conscious state (MCS) from vegetative state/unresponsive wakefulness syndrome (VS/UWS). This diagnostic uncertainty has driven the exploration of objective, reliable, and efficient assessment tools. Among these tools, electroencephalography (EEG) has garnered significant attention for its non-invasive nature, portability, and ability to capture real-time neurodynamics. This paper systematically reviews the application of EEG biomarkers in DOC assessment. These biomarkers are categorized into 3 main types: resting-state EEG features, task-related EEG features, and features derived from transcranial magnetic stimulation-EEG (TMS-EEG). Resting-state EEG biomarkers include features based on spectrum, microstates, nonlinear dynamics, and brain network metrics. These biomarkers provide baseline representations of brain activity in DOC patients. Studies have shown their ability to distinguish different levels of consciousness and predict clinical outcomes. However, because they are not task-specific, they are challenging to directly associate with specific brain functions or cognitive processes. Strengthening the correlation between resting-state EEG features and consciousness-related networks could offer more direct evidence for the pathophysiological mechanisms of DOC. Task-related EEG features include event-related potentials, event-related spectral modulations, and phase-related features. These features reveal the brain’s responses to external stimuli and provide dynamic information about residual cognitive functions, reflecting neurophysiological changes associated with specific cognitive, sensory, or behavioral tasks. Although these biomarkers demonstrate substantial value, their effectiveness rely on patient cooperation and task design. Developing experimental paradigms that are more effective at eliciting specific EEG features or creating composite paradigms capable of simultaneously inducing multiple features may more effectively capture the brain activity characteristics of DOC patients, thereby supporting clinical applications. TMS-EEG is a technique for probing the neurodynamics within thalamocortical networks without involving sensory, motor, or cognitive functions. Parameters such as the perturbational complexity index (PCI) have been proposed as reliable indicators of consciousness, providing objective quantification of cortical dynamics. However, despite its high sensitivity and objectivity compared to traditional EEG methods, TMS-EEG is constrained by physiological artifacts, operational complexity, and variability in stimulation parameters and targets across individuals. Future research should aim to standardize experimental protocols, optimize stimulation parameters, and develop automated analysis techniques to improve the feasibility of TMS-EEG in clinical applications. Our analysis suggests that no single EEG biomarker currently achieves an ideal balance between accuracy, robustness, and generalizability. Progress is constrained by inconsistencies in analysis methods, parameter settings, and experimental conditions. Additionally, the heterogeneity of DOC etiologies and dynamic changes in brain function add to the complexity of assessment. Future research should focus on the standardization of EEG biomarker research, integrating features from resting-state, task-related, and TMS-EEG paradigms to construct multimodal diagnostic models that enhance evaluation efficiency and accuracy. Multimodal data integration (e.g., combining EEG with functional near-infrared spectroscopy) and advancements in source localization algorithms can further improve the spatial precision of biomarkers. Leveraging machine learning and artificial intelligence technologies to develop intelligent diagnostic tools will accelerate the clinical adoption of EEG biomarkers in DOC diagnosis and prognosis, allowing for more precise evaluations of consciousness states and personalized treatment strategies.
4.The Refinement and Innovation of The UV Cross-linking and Immunoprecipitation
Jia-Min ZHAO ; Cheng-Jiang LU ; Ming YANG ; Nashun BUHE ; Gang WANG
Progress in Biochemistry and Biophysics 2025;52(4):1036-1052
RNA-binding proteins (RBPs) are ubiquitous components within cells, fulfilling essential functions in a myriad of biological processes. These proteins interact with RNA molecules to regulate gene expression at various levels, including transcription, splicing, transport, localization, translation, and degradation. Understanding the intricate network of RBP-RNA interactions is crucial for deciphering the complex regulatory mechanisms that govern cellular function and organismal development. Ultravidet (UV) cross-linking and immunoprecipitation (CLIP) stands out as a powerful approach designed to map the precise locations where RBPs bind to RNA. By using UV light to create covalent bonds between proteins and RNA, followed by immunoprecipitation to isolate the protein-RNA complexes, researchers can identify the direct targets of specific RBPs. The advent of high-throughput sequencing technologies has revolutionized CLIP, enabling the identification of not only the types but also the exact sequences of RNA bound by RBPs on a genome-wide scale. The evolution of CLIP has led to the development of specialized variants, each with unique features that address specific challenges and expand the scope of what can be studied. High-throughput sequencing CLIP (HITS-CLIP) was one of the first advancements, significantly increasing the throughput and resolution of RNA-protein interaction mapping. Photoactivatable-ribonucleoside-enhanced CLIP (PAR-CLIP) introduced the use of photoactivatable ribonucleosides to enhance cross-linking efficiency and specificity, reducing background noise and improving the detection of low-abundance RNA-protein interactions. Individual-nucleotide resolution CLIP (iCLIP) further refined the technique, achieving unprecedented precision by resolving individual nucleotides involved in RBP binding, which is particularly valuable for studying the fine details of RNA structure and function. Despite the remarkable progress, there remains room for improvement in CLIP technology. Researchers continue to seek methods to increase sensitivity, reduce technical variability, and improve the reproducibility of results. Advances in sample preparation, data analysis algorithms, and computational tools are critical for addressing these challenges. Moreover, the application of CLIP to more diverse biological systems, including non-model organisms and clinical samples, requires the development of tailored protocols and the optimization of existing ones. Looking forward, the field of RNA biology is poised to benefit greatly from ongoing innovations in CLIP technology. The exploration of non-canonical RNA-protein interactions, such as those involving long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), promises to reveal new layers of cellular regulation and may lead to the discovery of novel therapeutic targets. Furthermore, integrating CLIP data with other omics approaches, such as proteomics and metabolomics, will provide a more comprehensive understanding of the dynamic interplay between RNA and its binding partners within the cell. In conclusion, the continuous refinement and expansion of CLIP techniques have not only deepened our knowledge of RNA biology but have also opened up new avenues for investigating the molecular underpinnings of health and disease. As the technology matures, it is expected to play an increasingly pivotal role in both basic and applied research, contributing to the advancement of medical science and biotechnology.
5.Correlation of life events with depression, anxiety and somatic symptoms in graduate students: a study based on network analysis
Weili DENG ; Jia CAI ; Qiuyue LYV ; Qianshu MA ; Yupeng LUO ; Min XIE ; Qiang WANG
Sichuan Mental Health 2025;38(4):364-373
BackgroundGraduate students frequently face life events, many of which may adversely affect their mental well-being. However, the interaction between life events and the development of depression, anxiety, and somatic symptoms remains unclear. ObjectiveTo explore the relationship between life events and the development of depressive, anxiety and somatic symptoms in graduate students, thereby informing prevention strategies for these conditions. MethodsA sample of 6 722 newly enrolled graduate students at a comprehensive university in Southwest China from September to November 2018 was selected. The assessment was conducted using the Adolescent Self-rating Life Events Checklist (ASLEC), the 7-item Generalized Anxiety Disorder scale-7 item (GAD-7), the Patient Health Questionnaire Depression Scale-9 item (PHQ-9), and the Patient Health Questionnaire-15 (PHQ-15). Network analysis was implemented by using the bootnet and qgraph packages in the R software (version 4.2.3), with centrality indices calculated to identify core and bridge symptoms within the network. ResultsThe study encompassed a total of 6 171 graduate students, representing 91.80% of the target population. The prevalence rates of anxiety, depressive, and somatic symptoms among graduate students were 12.59% (777/6 171), 16.63% (1 026/6 171), and 27.66% (1 707/6 171), respectively. Network analysis revealed that 'academic stress' was the core symptom with the highest strength and expected influence (both values=1.207), while 'feeling down, depressed, or hopeless' was the bridge symptom with the highest bridge strength and bridge expected influence (both values=0.454). There was no significant difference in global network strength and edge weight between women and men (P>0.05). ConclusionAcademic stress, emerging as the core symptom, assumes a dominant position within the symptom network and exhibits strong interactions with other negative affective states. There was no gender difference in the network structure.
6.The role of microglia activated by the deletion of immune checkpoint receptor CD200R1 gene in a mouse model of Parkinson's disease.
Jia-Li GUO ; Tao-Ying HUANG ; Zhen ZHANG ; Kun NIU ; Xarbat GONGBIKAI ; Xiao-Li GONG ; Xiao-Min WANG ; Ting ZHANG
Acta Physiologica Sinica 2025;77(1):13-24
The study aimed to investigate the effect of the CD200R1 gene deletion on microglia activation and nigrostriatal dopamine neuron loss in the Parkinson's disease (PD) process. The CRISPR-Cas9 technology was applied to construct the CD200R1-/- mice. The primary microglia cells of wild-type and CD200R1-/- mice were cultured and treated with bacterial lipopolysaccharide (LPS). Microglia phagocytosis level was assessed by a fluorescent microsphere phagocytosis assay. PD mouse model was prepared by nigral stereotaxic injection of recombinant adeno-associated virus vector carrying human α-synuclein (α-syn). The changes in the motor behavior of the mice with both genotypes were evaluated by cylinder test, open field test, and rotarod test. Immunohistochemical staining was used to assess the loss of dopamine neurons in substantia nigra. Immunofluorescence staining was used to detect the expression level of CD68 (a key molecule involved in phagocytosis) in microglia. The results showed that CD200R1 deletion markedly enhanced LPS-induced phagocytosis in vitro by the microglial cells. In the mouse model of PD, CD200R1 deletion exacerbated motor behavior impairment and dopamine neuron loss in substantia nigra. Fluorescence intensity analysis results revealed a significant increase in CD68 expression in microglia located in the substantia nigra of CD200R1-/- mice. The above results suggest that CD200R1 deletion may further activates microglia by promoting microglial phagocytosis, leading to increased loss of the nigrostriatal dopamine neurons in the PD model mice. Therefore, targeting CD200R1 could potentially serve as a novel therapeutic target for the treatment of early-stage PD.
Animals
;
Microglia/physiology*
;
Mice
;
Phagocytosis
;
Parkinson Disease/genetics*
;
Disease Models, Animal
;
Receptors, Cell Surface/physiology*
;
Dopaminergic Neurons/pathology*
;
Antigens, CD/metabolism*
;
Gene Deletion
;
Substantia Nigra
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Cells, Cultured
;
Male
;
alpha-Synuclein
;
CD68 Molecule
;
Orexin Receptors
7.Research progress on the regulation of ferroptosis by non-coding RNAs in esophageal squamous cell cancer.
Jia-Min WANG ; Pan LIU ; Rui ZHU ; Dan SU
Acta Physiologica Sinica 2025;77(3):563-572
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy of the digestive tract that poses a significant threat to human health, with an incidence rate that continues to rise globally. Increasing research highlights the crucial role of non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating ferroptosis and contributing to the malignant progression of ESCC. These ncRNAs influence the proliferation, apoptosis, and invasion capabilities of ESCC cells by modulating iron metabolism and redox balance. miRNAs can regulate cellular iron accumulation and oxidative stress by targeting ferroptosis-related genes; lncRNAs may indirectly affect iron metabolic pathways by competitively binding to miRNAs; circRNAs, through a sponge effect, may regulate the activity of miRNAs. This review systematically summarizes the mechanisms of ncRNAs-mediated regulation of ferroptosis in ESCC, focusing on molecular mechanisms, regulatory networks, and their specific roles in the ferroptosis process. Additionally, the potential of ncRNAs in ESCC diagnosis, prognosis assessment, and therapeutic intervention is discussed, aiming to provide new insights and targets for ferroptosis-based tumor therapy.
Ferroptosis/genetics*
;
Humans
;
Esophageal Neoplasms/physiopathology*
;
Esophageal Squamous Cell Carcinoma
;
MicroRNAs/physiology*
;
RNA, Long Noncoding/physiology*
;
RNA, Circular
;
RNA, Untranslated/physiology*
8.Intraspecific variation of Forsythia suspensa chloroplast genome.
Yu-Han LI ; Lin-Lin CAO ; Chang GUO ; Yi-Heng WANG ; Dan LIU ; Jia-Hui SUN ; Sheng WANG ; Gang-Min ZHANG ; Wen-Pan DONG
China Journal of Chinese Materia Medica 2025;50(8):2108-2115
Forsythia suspensa is a traditional Chinese medicine and a commonly used landscaping plant. Its dried fruit is used in medicine for its functions of clearing heat, removing toxins, reducing swelling, dissipating masses, and dispersing wind and heat. It possesses extremely high medicinal and economic value. However, the genetic differentiation and diversity of its wild populations remain unclear. In this study, chloroplast genome sequences were obtained from 15 wild individuals of F. suspensa using high-throughput sequencing technology. The sequence characteristics and intraspecific variations were analyzed. The results were as follows:(1) The full length of the F. suspensa chloroplast genome ranged from 156 184 to 156 479 bp, comprising a large single-copy region, a small single-copy region, and two inverted repeat regions. The chloroplast genome encoded a total of 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes.(2) A total of 166-174 SSR loci, 792 SNV loci, and 63 InDel loci were identified in the F. suspensa chloroplast genome, indicating considerable genetic variation among individuals.(3) Population structure analysis revealed that F. suspensa could be divided into five or six groups. Both the population structure analysis and phylogenetic reconstruction results indicated significant genetic variation within the wild populations of F. suspensa, with no obvious correlation between intraspecific genetic differentiation and geographical distribution. This study provides new insights into the genetic diversity and differentiation within F. suspensa species and offers additional references for the conservation of species diversity and the utilization of germplasm resources in wild F. suspensa.
Genome, Chloroplast
;
Forsythia/classification*
;
Phylogeny
;
Genetic Variation
;
Chloroplasts/genetics*
;
Microsatellite Repeats
9.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
10.Identification and expression analysis of seed dehydration tolerance and PLD gene family in Panax medicinal plants.
Chao-Lin LI ; Min HUANG ; Na GE ; Qing-Yan WANG ; Jin-Shan JIA ; Ting LUO ; Jin-Yan ZHANG ; Ping ZHOU ; Jun-Wen CHEN
China Journal of Chinese Materia Medica 2025;50(12):3307-3321
Panax species are mostly valuable medicinal plants. While some species' seeds are sensitive to dehydration, the dehydration tolerance of seeds from other Panax species remains unclear. The phospholipase D(PLD) gene plays an important role in plant responses to dehydration stress. However, the characteristics of the PLD gene family and their mechanisms of response to dehydration stress in seeds of Panax species with different dehydration tolerances are not well understood. This study used seeds from eight Panax species to measure the germination rates and PLD activity after dehydration and to analyze the correlation between dehydration tolerance and seed traits. Bioinformatics analysis was also conducted to characterize the PnPLD and PvPLD gene families and to evaluate their expression patterns under dehydration stress. The dehydration tolerance of Panax seeds was ranked from high to low as follows: P. ginseng, P. zingiberensis, P. quinquefolius, P. vietnamensis var. fuscidiscus, P. japonicus var. angustifolius, P. japonicus, P. notoginseng, and P. stipuleanatus. A significant negative correlation was found between dehydration tolerance and seed shape(three-dimensional variance), with flatter seeds exhibiting stronger dehydration tolerance(r=-0.792). Eighteen and nineteen PLD members were identified in P. notoginseng and P. vietnamensis var. fuscidiscus, respectively. These members were classified into five isoforms: α, β, γ, δ, and ζ. The gene structures, subcellular localization, physicochemical properties, and other characteristics of PnPLD and PvPLD were similar. Both promoters contained regulatory elements associated with plant growth and development, hormone responses, and both abiotic and biotic stress. During dehydration, the PLD enzyme activity in P. notoginseng seeds gradually increased as the water content decreased, whereas in P. vietnamensis var. fuscidiscus, PLD activity first decreased and then increased. The expression of PLDα and PLDδ in P. notoginseng seeds initially increased and then decreased, whereas in P. vietnamensis var. fuscidiscus, the expression of PLDα and PLDδ consistently decreased. In conclusion, the dehydration tolerance of Panax seeds showed a significant negative correlation with seed shape. The dehydration tolerance in P. vietnamensis var. fuscidiscus and dehydration sensitivity of P. notoginseng seeds may be related to differences in PLD enzyme activity and the expression of PLDα and PLDδ genes. This study provided the first systematic comparison of dehydration tolerance in Panax seeds and analyzed the causes of tolerance differences and the optimal water content for long-term storage at ultra-low temperatures, thus providing a theoretical basis for the short-term and ultra-low temperature long-term storage of medicinal plant seeds with varying dehydration tolerances.
Seeds/metabolism*
;
Panax/physiology*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Phospholipase D/metabolism*
;
Plants, Medicinal/enzymology*
;
Germination
;
Multigene Family
;
Water/metabolism*
;
Dehydration
;
Phylogeny

Result Analysis
Print
Save
E-mail