1.Therapeutic Study on The Inhibition of Neuroinflammation in Ischemic Stroke by Induced Regulatory T Cells
Tian-Fang KANG ; Ai-Qing MA ; Li-Qi CHEN ; Han GONG ; Jia-Cheng OUYANG ; Fan PAN ; Hong PAN ; Lin-Tao CAI
Progress in Biochemistry and Biophysics 2025;52(4):946-956
ObjectiveNeuroinflammation plays a crucial role in both the onset and progression of ischemic stroke, exerting a significant impact on the recovery of the central nervous system. Excessive neuroinflammation can lead to secondary neuronal damage, further exacerbating brain injury and impairing functional recovery. As a result, effectively modulating and reducing neuroinflammation in the brain has become a key therapeutic strategy for improving outcomes in ischemic stroke patients. Among various approaches, targeting immune regulation to control inflammation has gained increasing attention. This study aims to investigate the role of in vitro induced regulatory T cells (Treg cells) in suppressing neuroinflammation after ischemic stroke, as well as their potential therapeutic effects. By exploring the mechanisms through which Tregs exert their immunomodulatory functions, this research is expected to provide new insights into stroke treatment strategies. MethodsNaive CD4+ T cells were isolated from mouse spleens using a negative selection method to ensure high purity, and then they were induced in vitro to differentiate into Treg cells by adding specific cytokines. The anti-inflammatory effects and therapeutic potential of Treg cells transplantation in a mouse model of ischemic stroke was evaluated. In the middle cerebral artery occlusion (MCAO) model, after Treg cells transplantation, their ability to successfully migrate to the infarcted brain region and their impact on neuroinflammation levels were examined. To further investigate the role of Treg cells in stroke recovery, the changes in cytokine expression and their effects on immune cell interactions was analyzed. Additionally, infarct size and behavioral scores were measured to assess the neuroprotective effects of Treg cells. By integrating multiple indicators, the comprehensive evaluation of potential benefits of Treg cells in the treatment of ischemic stroke was performed. ResultsTreg cells significantly regulated the expression levels of both pro-inflammatory and anti-inflammatory cytokines in vitro and in vivo, effectively balancing the immune response and suppressing excessive inflammation. Additionally, Treg cells inhibited the activation and activity of inflammatory cells, thereby reducing neuroinflammation. In the MCAO mouse model, Treg cells were observed to accumulate in the infarcted brain region, where they significantly reduced the infarct size, demonstrating their neuroprotective effects. Furthermore, Treg cell therapy notably improved behavioral scores, suggesting its role in promoting functional recovery, and increased the survival rate of ischemic stroke mice, highlighting its potential as a promising therapeutic strategy for stroke treatment. ConclusionIn vitro induced Treg cells can effectively suppress neuroinflammation caused by ischemic stroke, demonstrating promising clinical application potential. By regulating the balance between pro-inflammatory and anti-inflammatory cytokines, Treg cells can inhibit immune responses in the nervous system, thereby reducing neuronal damage. Additionally, they can modulate the immune microenvironment, suppress the activation of inflammatory cells, and promote tissue repair. The therapeutic effects of Treg cells also include enhancing post-stroke recovery, improving behavioral outcomes, and increasing the survival rate of ischemic stroke mice. With their ability to suppress neuroinflammation, Treg cell therapy provides a novel and effective strategy for the treatment of ischemic stroke, offering broad application prospects in clinical immunotherapy and regenerative medicine.
2.The Refinement and Innovation of The UV Cross-linking and Immunoprecipitation
Jia-Min ZHAO ; Cheng-Jiang LU ; Ming YANG ; Nashun BUHE ; Gang WANG
Progress in Biochemistry and Biophysics 2025;52(4):1036-1052
RNA-binding proteins (RBPs) are ubiquitous components within cells, fulfilling essential functions in a myriad of biological processes. These proteins interact with RNA molecules to regulate gene expression at various levels, including transcription, splicing, transport, localization, translation, and degradation. Understanding the intricate network of RBP-RNA interactions is crucial for deciphering the complex regulatory mechanisms that govern cellular function and organismal development. Ultravidet (UV) cross-linking and immunoprecipitation (CLIP) stands out as a powerful approach designed to map the precise locations where RBPs bind to RNA. By using UV light to create covalent bonds between proteins and RNA, followed by immunoprecipitation to isolate the protein-RNA complexes, researchers can identify the direct targets of specific RBPs. The advent of high-throughput sequencing technologies has revolutionized CLIP, enabling the identification of not only the types but also the exact sequences of RNA bound by RBPs on a genome-wide scale. The evolution of CLIP has led to the development of specialized variants, each with unique features that address specific challenges and expand the scope of what can be studied. High-throughput sequencing CLIP (HITS-CLIP) was one of the first advancements, significantly increasing the throughput and resolution of RNA-protein interaction mapping. Photoactivatable-ribonucleoside-enhanced CLIP (PAR-CLIP) introduced the use of photoactivatable ribonucleosides to enhance cross-linking efficiency and specificity, reducing background noise and improving the detection of low-abundance RNA-protein interactions. Individual-nucleotide resolution CLIP (iCLIP) further refined the technique, achieving unprecedented precision by resolving individual nucleotides involved in RBP binding, which is particularly valuable for studying the fine details of RNA structure and function. Despite the remarkable progress, there remains room for improvement in CLIP technology. Researchers continue to seek methods to increase sensitivity, reduce technical variability, and improve the reproducibility of results. Advances in sample preparation, data analysis algorithms, and computational tools are critical for addressing these challenges. Moreover, the application of CLIP to more diverse biological systems, including non-model organisms and clinical samples, requires the development of tailored protocols and the optimization of existing ones. Looking forward, the field of RNA biology is poised to benefit greatly from ongoing innovations in CLIP technology. The exploration of non-canonical RNA-protein interactions, such as those involving long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), promises to reveal new layers of cellular regulation and may lead to the discovery of novel therapeutic targets. Furthermore, integrating CLIP data with other omics approaches, such as proteomics and metabolomics, will provide a more comprehensive understanding of the dynamic interplay between RNA and its binding partners within the cell. In conclusion, the continuous refinement and expansion of CLIP techniques have not only deepened our knowledge of RNA biology but have also opened up new avenues for investigating the molecular underpinnings of health and disease. As the technology matures, it is expected to play an increasingly pivotal role in both basic and applied research, contributing to the advancement of medical science and biotechnology.
3.Characterization of non-alcoholic fatty liver disease–related hepatocellular carcinoma on contrast-enhanced ultrasound with Sonazoid
Yi DONG ; Juan CHENG ; Yun-Lin HUANG ; Yi-Jie QIU ; Jia-Ying CAO ; Xiu-Yun LU ; Wen-Ping WANG ; Kathleen MÖLLER ; Christoph F. DIETRICH
Ultrasonography 2025;44(3):232-242
Purpose:
This study aimed to evaluate the contrast-enhanced ultrasound with Sonazoid (Sonazoid-CEUS) features of hepatocellular carcinoma (HCC) in patients with non-alcoholic fatty liver disease (NAFLD).
Methods:
In this retrospective study, patients who underwent surgical resection and were histopathologically diagnosed with NAFLD or cirrhosis-related HCC were included. All patients received Sonazoid-CEUS examinations within 1 week prior to hepatic surgery. The enhancement patterns of HCC lesions were evaluated and compared between the two groups according to the current World Federation for Ultrasound in Medicine and Biology guidelines. Multivariate logistic regression analysis was used to assess the correlations between Sonazoid-CEUS enhancement patterns and clinicopathologic characteristics.
Results:
From March 2022 to April 2023, a total of 151 patients with HCC were included, comprising 72 with NAFLD-related HCC and 79 with hepatitis B virus (HBV) cirrhosis–related HCC. On Sonazoid-CEUS, more than half of the NAFLD-related HCCs exhibited relatively early and mild washout within 60 seconds (54.2%, 39/72), whereas most HBV cirrhosis–related HCCs displayed washout between 60 and 120 seconds (46.8%, 37/79) or after 120 seconds (39.2%, 31/79) (P<0.001). In the patients with NAFLD-related HCC, multivariate analysis revealed that international normalized ratio (odds ratio [OR], 0.002; 95% confidence interval [CI], 0.000 to 0.899; P=0.046) and poor tumor differentiation (OR, 21.930; 95% CI, 1.960 to 245.319; P=0.012) were significantly associated with washout occurring within 60 seconds.
Conclusion
Characteristic Sonazoid-CEUS features are useful for diagnosing HCC in patients with NAFLD.
4.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
5.Osteogenic/odontogenic differentiation ability of human dental pulp stem cells under photocrosslinked composite hydrogel scaffold
Dujuan YANG ; Mengke CHENG ; Jia LIU
Chinese Journal of Tissue Engineering Research 2025;29(19):4022-4028
BACKGROUND:The composite hydrogel scaffold formed by crosslinking of gelatin-methacryloyl(Gel-MA)and treated dentin matrix(TDM)under a certain proportion of ultraviolet light has good porosity,mechanical properties,swelling properties,and biodegradation rate,which provides a new idea and method for clinical pulp regeneration of young permanent teeth. OBJECTIVE:To explore the effect of Gel-MA/TDM composite hydrogel scaffold with 1:2 mass ratio on the proliferation ability and osteogenic/odontoblast differentiation ability of human dental pulp stem cells. METHODS:The passage 3 dental pulp stem cells were inoculated into the Gel-MA/TDM composite hydrogel scaffold with a mass ratio of 1:2.The proliferation ability of human dental pulp stem cells in the composite hydrogel scaffold was detected by CCK-8 assay.Dental pulp stem cells at passage 3 were cultured in Gel-MA/TDM composite hydrogel scaffold with a mass ratio of 1:2 for osteogenic induction.The formation of mineralized nodules was observed by alkaline phosphatase and alizarin red staining.The gene expression levels of odontogenic factors(dentin matrix protein 1,dentin sialophosphoprotein),and osteogenic factors(osteocalcin,Runt-related transcription factor 2)were detected by RT-PCR. RESULTS AND CONCLUSION:(1)The results of CCK-8 assay showed that the proliferation ability of dental pulp stem cells increased significantly in the first 7 days,and slowed down on day 10.(2)The results of alkaline phosphatase staining and alizarin red staining showed that the alkaline phosphatase activity and the formation of mineralized nodules of dental pulp stem cells in the Gel-MA/TDM composite hydrogel group were stronger than those in Gel-MA hydrogel group(P<0.05).(3)RT-PCR results showed that the gene expression levels of dentin matrix protein 1,dentin sialophosphoprotein,osteocalcin,and Runt-related transcription factor 2 in dental pulp stem cells in Gel-MA/TDM composite hydrogel group were significantly higher than those in Gel-MA hydrogel group(P<0.05).The gene expression level at 14 days was significantly higher than that at 7 days(P<0.05).The results conclude that the dental pulp stem cells cultured on Gel-MA/TDM composite hydrogel scaffolds with a mass ratio of 1:2 exhibit a good proliferation ability,which can strengthen the osteogenic and odontogenic differentiation abilities of dental pulp stem cells.
6.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
7.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
8.Characterization of non-alcoholic fatty liver disease–related hepatocellular carcinoma on contrast-enhanced ultrasound with Sonazoid
Yi DONG ; Juan CHENG ; Yun-Lin HUANG ; Yi-Jie QIU ; Jia-Ying CAO ; Xiu-Yun LU ; Wen-Ping WANG ; Kathleen MÖLLER ; Christoph F. DIETRICH
Ultrasonography 2025;44(3):232-242
Purpose:
This study aimed to evaluate the contrast-enhanced ultrasound with Sonazoid (Sonazoid-CEUS) features of hepatocellular carcinoma (HCC) in patients with non-alcoholic fatty liver disease (NAFLD).
Methods:
In this retrospective study, patients who underwent surgical resection and were histopathologically diagnosed with NAFLD or cirrhosis-related HCC were included. All patients received Sonazoid-CEUS examinations within 1 week prior to hepatic surgery. The enhancement patterns of HCC lesions were evaluated and compared between the two groups according to the current World Federation for Ultrasound in Medicine and Biology guidelines. Multivariate logistic regression analysis was used to assess the correlations between Sonazoid-CEUS enhancement patterns and clinicopathologic characteristics.
Results:
From March 2022 to April 2023, a total of 151 patients with HCC were included, comprising 72 with NAFLD-related HCC and 79 with hepatitis B virus (HBV) cirrhosis–related HCC. On Sonazoid-CEUS, more than half of the NAFLD-related HCCs exhibited relatively early and mild washout within 60 seconds (54.2%, 39/72), whereas most HBV cirrhosis–related HCCs displayed washout between 60 and 120 seconds (46.8%, 37/79) or after 120 seconds (39.2%, 31/79) (P<0.001). In the patients with NAFLD-related HCC, multivariate analysis revealed that international normalized ratio (odds ratio [OR], 0.002; 95% confidence interval [CI], 0.000 to 0.899; P=0.046) and poor tumor differentiation (OR, 21.930; 95% CI, 1.960 to 245.319; P=0.012) were significantly associated with washout occurring within 60 seconds.
Conclusion
Characteristic Sonazoid-CEUS features are useful for diagnosing HCC in patients with NAFLD.
9.Characterization of non-alcoholic fatty liver disease–related hepatocellular carcinoma on contrast-enhanced ultrasound with Sonazoid
Yi DONG ; Juan CHENG ; Yun-Lin HUANG ; Yi-Jie QIU ; Jia-Ying CAO ; Xiu-Yun LU ; Wen-Ping WANG ; Kathleen MÖLLER ; Christoph F. DIETRICH
Ultrasonography 2025;44(3):232-242
Purpose:
This study aimed to evaluate the contrast-enhanced ultrasound with Sonazoid (Sonazoid-CEUS) features of hepatocellular carcinoma (HCC) in patients with non-alcoholic fatty liver disease (NAFLD).
Methods:
In this retrospective study, patients who underwent surgical resection and were histopathologically diagnosed with NAFLD or cirrhosis-related HCC were included. All patients received Sonazoid-CEUS examinations within 1 week prior to hepatic surgery. The enhancement patterns of HCC lesions were evaluated and compared between the two groups according to the current World Federation for Ultrasound in Medicine and Biology guidelines. Multivariate logistic regression analysis was used to assess the correlations between Sonazoid-CEUS enhancement patterns and clinicopathologic characteristics.
Results:
From March 2022 to April 2023, a total of 151 patients with HCC were included, comprising 72 with NAFLD-related HCC and 79 with hepatitis B virus (HBV) cirrhosis–related HCC. On Sonazoid-CEUS, more than half of the NAFLD-related HCCs exhibited relatively early and mild washout within 60 seconds (54.2%, 39/72), whereas most HBV cirrhosis–related HCCs displayed washout between 60 and 120 seconds (46.8%, 37/79) or after 120 seconds (39.2%, 31/79) (P<0.001). In the patients with NAFLD-related HCC, multivariate analysis revealed that international normalized ratio (odds ratio [OR], 0.002; 95% confidence interval [CI], 0.000 to 0.899; P=0.046) and poor tumor differentiation (OR, 21.930; 95% CI, 1.960 to 245.319; P=0.012) were significantly associated with washout occurring within 60 seconds.
Conclusion
Characteristic Sonazoid-CEUS features are useful for diagnosing HCC in patients with NAFLD.
10.Urban-rural difference in adverse outcomes of pulmonary tuberculosis in patients with pulmonary tuberculosis-diabetes mellitus comorbidity
FANG Zijian ; LI Qingchun ; XIE Li ; SONG Xu ; DAI Ruoqi ; WU Yifei ; JIA Qingjun ; CHENG Qinglin
Journal of Preventive Medicine 2025;37(1):7-11
Objective:
To investigate the urban and rural differences in adverse outcomes of pulmonary tuberculosis (PTB) in patients with pulmonary tuberculosis-diabetes mellitus comorbidity (PTB-DM), so as to provide insights into improving the prevention and treatment measures for PTB-DM.
Methods:
Patients with PTB-DM who were admitted and discharged from 14 designated tuberculosis hospitals in Hangzhou City from 2018 to 2022 were selected. Basic information, and history of diagnosis and treatment were collected through hospital information systems. The adverse outcomes of PTB were defined as endpoints, and the proportions of adverse outcomes of PTB in urban and rural patients with PTB-DM were analyzed. Factors affecting the adverse outcomes of PTB were identified using a multivariable Cox proportional hazards regression model.
Results:
A total of 823 patients with PTB-DM were enrolled, including 354 (43.01%) urban and 469 (56.99%) rural patients. There were 112 (13.61%) patients with adverse outcomes of PTB. The proportions of adverse outcomes of PTB in urban and rural patients were 14.41% and 13.01%, respectively, with no statistically significant difference (P>0.05). Multivariable Cox proportional hazards regression analysis identified first diagnosed in county-level hospitals or above (HR=2.107, 95%CI: 1.181-3.758) and drug resistance (HR=3.303, 95%CI: 1.653-6.600) as the risk factors for adverse outcomes of PTB in urban patients with PTB-DM, while the treatment/observed management throughout the process (HR=0.470, 95%CI: 0.274-0.803) and fixed-dose combinations throughout the process (HR=0.331, 95%CI: 0.151-0.729) as the protective factors for adverse outcomes in rural patients with PTB-DM.
Conclusions
There are differences in influencing factors for adverse outcomes of PTB in urban and rural patients with PTB-DM. The adverse outcomes of PTB are associated with first diagnosed hospitals and drug resistance in urban patients, and are associated with the treatment/observed management and fixed-dose combinations throughout the process in rural patients.


Result Analysis
Print
Save
E-mail