1.Current Status and Strategies of Integrated Traditional Chinese and Western Medicine in the Treatment of Helicobacter pylori Infection
Xuezhi ZHANG ; Xia DING ; Zhen LIU ; Hui YE ; Xiaofen JIA ; Hong CHENG ; Zhenyu WU ; Xudong TANG
Journal of Traditional Chinese Medicine 2026;67(1):111-116
This paper systematically reviews the current status of integrated traditional Chinese and western medicine in the treatment of Helicobacter pylori (Hp) infection, as well as recent progress in clinical and basic research both in China and internationally. It summarizes the advantages of traditional Chinese medicine (TCM) in Hp infection management, including improving Hp eradication rates, enhancing antibiotic sensitivity, reducing antimicrobial resistance, decreasing drug-related adverse effects, and ameliorating gastric mucosal lesions. These advantages are particularly evident in patients who are intolerant to bismuth-containing regimens, those with refractory Hp infection, and individuals with precancerous gastric lesions. An integrated, whole-process management approach and individualized, staged comprehensive treatment strategies combining TCM and western medicine are proposed for Hp infection. Future prevention and control of Hp infection should adopt an integrative Chinese-western medical strategy, emphasizing prevention, strengthening primary care, implementing proactive long-term monitoring, optimizing screening strategies, and advancing the development of novel technologies and mechanistic studies of Chinese herbal interventions. These efforts aim to provide a theoretical basis and practical pathways for the establishment and improvement of Hp infection prevention and control systems.
2.Role of VEGF Signaling Pathway in Pathological Mechanism of Colorectal Cancer and Traditional Chinese Medicine Intervention: A Review
Qiuning LIU ; Yutian ZHU ; Yun XU ; Yang YE ; Xiaoqiang JIA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):289-296
Colorectal cancer is a malignant tumor that originates from the epithelial cells of the colon and rectum. It has the third highest incidence and the second highest mortality rate among malignant tumors worldwide. With the rapid development of the economy and the increasing Westernization of dietary habits in China, its incidence in China has been rising year by year. Over the past decade, despite the introduction of numerous treatment methods for colorectal cancer, the efficacy of existing therapies remains unsatisfactory. In recent years, traditional Chinese medicine (TCM) has become a major focus in the treatment of colorectal cancer due to its advantages of multi-target, multi-pathway mechanisms and low toxicity and side effects. Vascular endothelial growth factor (VEGF) is an important angiogenic factor that promotes blood vessel formation, providing nutrients and oxygen for tumor growth. It also increases vascular permeability, allowing tumor cells to easily pass through the blood vessel wall into other tissues, thereby facilitating metastasis. Several studies have shown that TCM can inhibit tumor angiogenesis and lymphangiogenesis, promote tumor cell apoptosis, and inhibit the proliferation of colorectal cancer cells by acting on the VEGF signaling pathway, thereby delaying tumor growth. In recent years, research in this field has been rapidly updated, but there is a lack of relevant summaries, making subsequent literature searches inconvenient. Therefore, this article focuses on the physiological functions of the VEGF signaling pathway, its role in the occurrence of colorectal cancer, and the intervention of TCM on VEGF, providing a supplement and summary of relevant information to offer a reference for future research in this area.
3.Research progress on the improvement of myocardial fibrosis by traditional Chinese medicine through regulation of NLRP3 inflammasome
Rui ZHANG ; Jingshun YAN ; Fuyun JIA ; Kexin JIA ; Chenyang LIU ; Yan LIU ; Ye LI ; Qiang XU
China Pharmacy 2025;36(8):1008-1012
Myocardial fibrosis (MF), characterized by decreased cardiac function and myocardial compliance, is a pathological process and a progression factor in various cardiovascular diseases. The nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3 (NLRP3) inflammasome is closely related to the development of MF. Recent studies have shown that traditional Chinese medicine (TCM) can regulate the NLRP3 inflammasome to alleviate MF. Based on this, this article systematically summarizes the research progress on the mechanisms by which TCM regulates the NLRP3 inflammasome to improve MF. It is found that active ingredients of TCM, such as alkaloids (lycorine,vincristine,bufalin), saponins (astragaloside Ⅳ, diosgenin,ginsenoside Rg3), terpenoids (celastrol,oridonin), and phenols (polydatin,curcumin,phloridzin) as well as TCM formulas (Zhachong shisanwei pills,Zhilong huoxue tongyu capsules, Luqi formula) can inhibit the activation of the NLRP3 inflammasome, thereby suppressing the release of inflammatory factors such as interleukin-1β and IL-18, reducing inflammatory damage to myocardial tissue, alleviating excessive deposition of the extracellular matrix, and thus exerting the effect of improving MF.
4.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
5.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
6.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
7.Temporal trend in mortality due to congenital heart disease in China from 2008 to 2021.
Youping TIAN ; Xiaojing HU ; Qing GU ; Miao YANG ; Pin JIA ; Xiaojing MA ; Xiaoling GE ; Quming ZHAO ; Fang LIU ; Ming YE ; Weili YAN ; Guoying HUANG
Chinese Medical Journal 2025;138(6):693-701
BACKGROUND:
Congenital heart disease (CHD) is a leading cause of birth defect-related mortality. However, more recent CHD mortality data for China are lacking. Additionally, limited studies have evaluated sex, rural-urban, and region-specific disparities of CHD mortality in China.
METHODS:
We designed a population-based study using data from the Dataset of National Mortality Surveillance in China between 2008 and 2021. We calculated age-adjusted CHD mortality using the sixth census data of China in 2010 as the standard population. We assessed the temporal trends in CHD mortality by age, sex, area, and region from 2008 to 2021 using the joinpoint regression model.
RESULTS:
From 2008 to 2021, 33,534 deaths were attributed to CHD. The period witnessed a two-fold decrease in the age-adjusted CHD mortality from 1.61 to 0.76 per 100,000 persons (average annual percent change [AAPC] = -5.90%). Females tended to have lower age-adjusted CHD mortality than males, but with a similar decline rate from 2008 to 2021 (females: AAPC = -6.15%; males: AAPC = -5.84%). Similar AAPC values were observed among people living in urban (AAPC = -6.64%) and rural (AAPC = -6.12%) areas. Eastern regions experienced a more pronounced decrease in the age-adjusted CHD mortality (AAPC = -7.86%) than central (AAPC = -5.83%) and western regions (AAPC = -3.71%) between 2008 and 2021. Approximately half of the deaths (46.19%) due to CHD occurred during infancy. The CHD mortality rates in 2021 were lower than those in 2008 for people aged 0-39 years, with the largest decrease observed among children aged 1-4 years (AAPC = -8.26%), followed by infants (AAPC = -7.01%).
CONCLUSIONS
CHD mortality in China has dramatically decreased from 2008 to 2021. The slower decrease in CHD mortality in the central and western regions than in the eastern regions suggested that public health policymakers should pay more attention to health resources and health education for central and western regions.
Humans
;
Heart Defects, Congenital/mortality*
;
Male
;
Female
;
China/epidemiology*
;
Infant
;
Child, Preschool
;
Adult
;
Child
;
Adolescent
;
Infant, Newborn
;
Middle Aged
;
Young Adult
;
Aged
;
Rural Population
8.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
9.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
10.Local overexpression of miR-429 sponge in subcutaneous white adipose tissue improves obesity and related metabolic disorders.
Liu YAO ; Wen-Jing XIU ; Chen-Ji YE ; Xin-Yu JIA ; Wen-Hui DONG ; Chun-Jiong WANG
Acta Physiologica Sinica 2025;77(3):441-448
Obesity is a worldwide health problem. An imbalance in energy metabolism is an important cause of obesity and related metabolic diseases. Our previous studies showed that inhibition of miR-429 increased the protein level of uncoupling protein 1 (UCP1) in beige adipocytes; however, whether local inhibition of miR-429 in subcutaneous adipose tissue affects diet-induced obesity and related metabolic disorders remains unclear. The aim of this study was to investigate the effect of local overexpression of miR-429 sponge in subcutaneous adipose tissue on obesity and related metabolic disorders. The control adeno-associated virus (AAV) or AAV expressing the miR-429 sponge was injected into mouse inguinal white adipose tissue. Seven days later, the mice were fed a high-fat diet for 10 weeks to induce obesity. The effects of the miR-429 sponge on body weight, adipose tissue weight, plasma glucose and lipid levels, and hepatic lipid content were explored. The results showed that the overexpression of miR-429 sponge in subcutaneous white adipose tissue reduced body weight and fat mass, decreased fasting blood glucose and plasma cholesterol levels, improved glucose tolerance, and alleviated hepatic lipid deposition in mice. Mechanistic investigation showed that the inhibition of miR-429 significantly upregulated the expression of UCP1 in adipocytes and adipose tissue. These results suggest that local inhibition of miR-429 in subcutaneous white adipose tissue ameliorates obesity and related metabolic disorders potentially by upregulating UCP1, and miR-429 is a potential therapeutic target for the treatment of obesity and related metabolic disorders.
Animals
;
MicroRNAs/physiology*
;
Obesity/metabolism*
;
Mice
;
Adipose Tissue, White/metabolism*
;
Metabolic Diseases
;
Subcutaneous Fat/metabolism*
;
Male
;
Uncoupling Protein 1/metabolism*
;
Diet, High-Fat
;
Mice, Inbred C57BL

Result Analysis
Print
Save
E-mail