1.Mechanism of Tangbikang Dry Paste in Prevention and Treatment of Type 2 Diabetic Peripheral Neuropathy Based on GLO-1/AGE/RAGE Pathway
Lijia WU ; Chengfei ZHANG ; Xiaolei JIA ; Lingling QIN ; Haiyan WANG ; Yukun HUANG ; You WANG ; Xincui BAO ; Jing YANG ; Cuiyan LYU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):60-69
ObjectiveTo investigate the mechanism of Tangbikang dry paste in the prevention and treatment of type 2 diabetic peripheral neuropathy (DPN) based on the glyoxalase-1 (GLO-1)/advanced glycation end products (AGE)/receptor for advanced glycation end products (RAGE) pathway. MethodsA total of 56 Sprague-Dawley rats were randomly divided, with eight assigned to the normal group. The remaining 48 rats were fed a high-fat diet combined with intraperitoneal injection of streptozotocin (STZ) to induce a type 2 diabetes mellitus (T2DM) model. Based on blood glucose levels, the rats were randomly assigned to the model group, Tanglin group (13.5 mg·kg-1), metformin group (135 mg·kg-1), and Tangbikang dry paste low-, medium-, and high-dose groups (3, 6, 12 g·kg-1). Successful modeling of DPN was confirmed by a decrease in mechanical pain threshold in the model group at week 4. Fasting blood glucose, body weight, and mechanical pain threshold were measured every 4 weeks. After 16 weeks of intervention, the pathological morphology of the sciatic nerve was observed using hematoxylin-eosin (HE) staining. The expression of RAGE, AGE, protein kinase C (PKC), and collagen (COL) in the sciatic nerve was assessed by immunohistochemistry. The mRNA expression of RAGE, PKC, Toll-like receptor (TLR), COL, and GLO-1 was detected using real-time quantitative PCR (Real-time PCR). Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CREA), urea (UREA), interleukin-6 (IL-6), and tumor necrosis factor (TNF)-α were measured by enzyme-linked immunosorbent assay (ELISA). ResultsCompared with the normal group, the model group showed significantly increased fasting blood glucose (P<0.01), decreased body weight and mechanical pain threshold (P<0.01), and elevated serum AST, ALT, CREA, UREA, IL-6, and TNF-α levels (P<0.01). The expression of RAGE, AGE, and PKC in the sciatic nerve was significantly increased (P<0.01), while COL expression was decreased (P<0.01). The mRNA expression of TLR, RAGE, and PKC was upregulated (P<0.01), whereas COL and GLO-1 mRNA levels were downregulated (P<0.01). Histological examination showed irregular nerve morphology, axonal alterations, and myelin degeneration. Compared with the model group, fasting blood glucose levels in the Tangbikang dry paste high-dose group at all time points and in the medium-dose group at weeks 4 and 16 were significantly reduced (P<0.05, P<0.01). No significant changes in body weight were observed across all Tangbikang dose groups. The mechanical pain threshold was elevated at different time points after administration in all Tangbikang groups (P<0.05, P<0.01). Serum IL-6 and TNF-α levels were decreased in all dose groups (P<0.05, P<0.01). The expression of RAGE, AGE, and PKC in the sciatic nerve was reduced (P<0.01), while COL expression was increased (P<0.01). The mRNA expression of TLR, RAGE, and PKC was downregulated (P<0.01), whereas GLO-1 mRNA expression was upregulated (P<0.05, P<0.01). Additionally, COL mRNA expression was significantly increased in the low- and high-dose groups (P<0.01). Pathological changes in the sciatic nerve were milder in all Tangbikang groups compared to the model group. ConclusionTangbikang dry paste significantly improves DPN, and its mechanism may be associated with the regulation of the GLO-1/AGE/RAGE signaling pathway.
2.Mechanism of Tangbikang Dry Paste in Prevention and Treatment of Type 2 Diabetic Peripheral Neuropathy Based on GLO-1/AGE/RAGE Pathway
Lijia WU ; Chengfei ZHANG ; Xiaolei JIA ; Lingling QIN ; Haiyan WANG ; Yukun HUANG ; You WANG ; Xincui BAO ; Jing YANG ; Cuiyan LYU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):60-69
ObjectiveTo investigate the mechanism of Tangbikang dry paste in the prevention and treatment of type 2 diabetic peripheral neuropathy (DPN) based on the glyoxalase-1 (GLO-1)/advanced glycation end products (AGE)/receptor for advanced glycation end products (RAGE) pathway. MethodsA total of 56 Sprague-Dawley rats were randomly divided, with eight assigned to the normal group. The remaining 48 rats were fed a high-fat diet combined with intraperitoneal injection of streptozotocin (STZ) to induce a type 2 diabetes mellitus (T2DM) model. Based on blood glucose levels, the rats were randomly assigned to the model group, Tanglin group (13.5 mg·kg-1), metformin group (135 mg·kg-1), and Tangbikang dry paste low-, medium-, and high-dose groups (3, 6, 12 g·kg-1). Successful modeling of DPN was confirmed by a decrease in mechanical pain threshold in the model group at week 4. Fasting blood glucose, body weight, and mechanical pain threshold were measured every 4 weeks. After 16 weeks of intervention, the pathological morphology of the sciatic nerve was observed using hematoxylin-eosin (HE) staining. The expression of RAGE, AGE, protein kinase C (PKC), and collagen (COL) in the sciatic nerve was assessed by immunohistochemistry. The mRNA expression of RAGE, PKC, Toll-like receptor (TLR), COL, and GLO-1 was detected using real-time quantitative PCR (Real-time PCR). Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CREA), urea (UREA), interleukin-6 (IL-6), and tumor necrosis factor (TNF)-α were measured by enzyme-linked immunosorbent assay (ELISA). ResultsCompared with the normal group, the model group showed significantly increased fasting blood glucose (P<0.01), decreased body weight and mechanical pain threshold (P<0.01), and elevated serum AST, ALT, CREA, UREA, IL-6, and TNF-α levels (P<0.01). The expression of RAGE, AGE, and PKC in the sciatic nerve was significantly increased (P<0.01), while COL expression was decreased (P<0.01). The mRNA expression of TLR, RAGE, and PKC was upregulated (P<0.01), whereas COL and GLO-1 mRNA levels were downregulated (P<0.01). Histological examination showed irregular nerve morphology, axonal alterations, and myelin degeneration. Compared with the model group, fasting blood glucose levels in the Tangbikang dry paste high-dose group at all time points and in the medium-dose group at weeks 4 and 16 were significantly reduced (P<0.05, P<0.01). No significant changes in body weight were observed across all Tangbikang dose groups. The mechanical pain threshold was elevated at different time points after administration in all Tangbikang groups (P<0.05, P<0.01). Serum IL-6 and TNF-α levels were decreased in all dose groups (P<0.05, P<0.01). The expression of RAGE, AGE, and PKC in the sciatic nerve was reduced (P<0.01), while COL expression was increased (P<0.01). The mRNA expression of TLR, RAGE, and PKC was downregulated (P<0.01), whereas GLO-1 mRNA expression was upregulated (P<0.05, P<0.01). Additionally, COL mRNA expression was significantly increased in the low- and high-dose groups (P<0.01). Pathological changes in the sciatic nerve were milder in all Tangbikang groups compared to the model group. ConclusionTangbikang dry paste significantly improves DPN, and its mechanism may be associated with the regulation of the GLO-1/AGE/RAGE signaling pathway.
3.Exploring Regulatory Effect of Kaixuan Jiedu Core Prescription on SPHK2/S1P/MCP-1 Pathway in Psoriasis-like Mouse Model Based on Sphingolipid Metabolism
Yeping QIN ; Wenhui LIU ; Dan DAI ; Jia XU ; Chong LI ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):60-68
ObjectiveTo explore the effects of Kaixuan Jiedu core prescription (KXJD) on sphingolipid metabolism in the mouse model of imiquimod-induced psoriasis-like skin lesions. MethodsThirty-seven male C57BL/6J mice were randomly assigned into five groups: healthy control (n=11), model (n=11), methotrexate (MTX, n=5), low-dose (15.21 g·kg-1) KXJD (n=5), and high-dose (30.42 g·kg-1) KXJD (n=5). Psoriasis-like skin lesions were induced in mice with 62.5 mg 5% imiquimod cream applied on the back. The KXJD groups and MTX group were treated with 0.2 mL corresponding decoction and MTX, respectively, by gavage daily, while the other groups were given an equal volume of normal saline by the same way. After 5 days of treatment, back skin lesions were collected. Firstly, healthy control and model mice were selected for tandem mass tag (TMT) quantitative proteomics (control vs model=3 vs 3) and targeted lipid metabolomics (control vs model=11 vs 11). Then, the binding degree between core components and target proteins was predicted via network pharmacology and molecular docking. Finally, an animal experiment was performed to decipher the specific regulation mechanism of KXJD on sphingolipid metabolism. Immunohistochemistry was employed to determine the expression level of sphingosine-1-phosphate (S1P), and Western blot was employed to determine the expression levels of sphingosine kinase 2 (SPHK2) and monocyte chemotactic protein-1 (MCP-1). ResultsTMT proteomics and targeted lipid metabolomics suggested that sphingolipid metabolism was active in the psoriatic skin, and key proteases [serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), SPHK2, delta(4)-desaturase sphingolipid 1 (Degs1), and ceramide synthase 4 (CerS4)] and 8 sphingolipid metabolites (including ceramides, sphingol, sphingomyelin, and glycosphingolipid) expressed abnormally (P<0.05) compared with those in the healthy skin. The molecular docking results indicated that the binding energy between the active components (quercetin, kaempferol, and luteolin) in KXJD and key proteins involved in sphingolipid metabolism was less than-8 kal·mol-1. Further experimental verification showed elevated expression levels of SPHK2, S1P, and MCP-1 in psoriatic skin compared with healthy skin (P<0.05), and KXJD down-regulated the expression levels of SPHK2, S1P, and MCP-1 compared with the model group (P<0.05). ConclusionThis study indicates that there is an imbalance in sphingolipid metabolism in psoriatic skin lesions. KXJD may reduce psoriasis-like lesions in mice by regulating sphingolipid metabolism via the SPHK2/S1P/MCP-1 pathway.
4.Exploring Regulatory Effect of Kaixuan Jiedu Core Prescription on SPHK2/S1P/MCP-1 Pathway in Psoriasis-like Mouse Model Based on Sphingolipid Metabolism
Yeping QIN ; Wenhui LIU ; Dan DAI ; Jia XU ; Chong LI ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):60-68
ObjectiveTo explore the effects of Kaixuan Jiedu core prescription (KXJD) on sphingolipid metabolism in the mouse model of imiquimod-induced psoriasis-like skin lesions. MethodsThirty-seven male C57BL/6J mice were randomly assigned into five groups: healthy control (n=11), model (n=11), methotrexate (MTX, n=5), low-dose (15.21 g·kg-1) KXJD (n=5), and high-dose (30.42 g·kg-1) KXJD (n=5). Psoriasis-like skin lesions were induced in mice with 62.5 mg 5% imiquimod cream applied on the back. The KXJD groups and MTX group were treated with 0.2 mL corresponding decoction and MTX, respectively, by gavage daily, while the other groups were given an equal volume of normal saline by the same way. After 5 days of treatment, back skin lesions were collected. Firstly, healthy control and model mice were selected for tandem mass tag (TMT) quantitative proteomics (control vs model=3 vs 3) and targeted lipid metabolomics (control vs model=11 vs 11). Then, the binding degree between core components and target proteins was predicted via network pharmacology and molecular docking. Finally, an animal experiment was performed to decipher the specific regulation mechanism of KXJD on sphingolipid metabolism. Immunohistochemistry was employed to determine the expression level of sphingosine-1-phosphate (S1P), and Western blot was employed to determine the expression levels of sphingosine kinase 2 (SPHK2) and monocyte chemotactic protein-1 (MCP-1). ResultsTMT proteomics and targeted lipid metabolomics suggested that sphingolipid metabolism was active in the psoriatic skin, and key proteases [serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), SPHK2, delta(4)-desaturase sphingolipid 1 (Degs1), and ceramide synthase 4 (CerS4)] and 8 sphingolipid metabolites (including ceramides, sphingol, sphingomyelin, and glycosphingolipid) expressed abnormally (P<0.05) compared with those in the healthy skin. The molecular docking results indicated that the binding energy between the active components (quercetin, kaempferol, and luteolin) in KXJD and key proteins involved in sphingolipid metabolism was less than-8 kal·mol-1. Further experimental verification showed elevated expression levels of SPHK2, S1P, and MCP-1 in psoriatic skin compared with healthy skin (P<0.05), and KXJD down-regulated the expression levels of SPHK2, S1P, and MCP-1 compared with the model group (P<0.05). ConclusionThis study indicates that there is an imbalance in sphingolipid metabolism in psoriatic skin lesions. KXJD may reduce psoriasis-like lesions in mice by regulating sphingolipid metabolism via the SPHK2/S1P/MCP-1 pathway.
5.Therapeutic Effect of Wenweishu Granules on Functional Dyspepsia Rats with Spleen-stomach Deficiency Cold Syndrome Based on Bioinformatics Analysis and Experimental Validation
Xinyu YANG ; Xiaoyi JIA ; Zihua XUAN ; Shuangying GUI ; Yanfang WU ; Yuhan MA ; Qin RUAN ; Jia ZHENG ; Zhiyong JIAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):30-40
ObjectiveThis study aims to investigate the therapeutic effects of Wenweishu granule (WWSG) on functional dyspepsia (FD) with spleen-stomach deficiency cold syndrome in rats by integrating network pharmacology, molecular docking, and animal experiments. MethodsActive components and corresponding targets of WWSG were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM). Disease-related targets for FD with spleen-stomach deficiency cold syndrome were screened using GeneCards and the Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine (TCMIP). Core therapeutic targets were identified via Cytoscape and validated by molecular docking. A rat model of FD with spleen-stomach deficiency cold syndrome was established using vinegar gavage combined with tail-clamping. The rats were randomly divided into a model group, low-, medium-, and high-dose WWSG groups (2.0, 4.0, 8.0 g·kg-1), a domperidone group (3.0 mg·kg-1), a Fuzi Lizhong pillwan (0.8 g·kg-1), and a normal control group (n=10 per group). Drugs were administered once daily by gavage for 14 consecutive days. After treatment, body weight, symptom scores, and gastrointestinal motility indices were recorded. Gastric and duodenal pathologies changes were observed via hematoxylin-eosin (HE) staining. Brain-gut peptides were measured in serum and tissue using enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry and Western blot were performed to assess stem cell factor (SCF) and receptor tyrosine kinase (c-Kit) protein expression in gastric tissues. ResultsA total of 305 drug targets, 1 140 disease targets, and 116 overlapping targets were identified. Cytoscape analysis revealed 104 core targets. Enrichment analysis indicated that the SCF/c-Kit signaling pathway was the key mechanism. Molecular docking confirmed a strong binding affinity between active components of WWSG and SCF/c-Kit proteins (binding energy<-5.1 kcal·mol-1). Compared with the normal group, model rats exhibited slower weight gain (P<0.05), reduced gastric emptying and intestinal propulsion (P<0.01), mild gastric mucosal shedding, duodenal inflammatory cell infiltration, decreased levels of gastrin (GAS), 5-hydroxytryptamine (5-HT), and vasoactive intestinal peptide (VIP) (P<0.05, P<0.01), and elevated somatostatin (SS) expression (P<0.05, P<0.01). WWSG treatment ameliorated weight gain, symptom scores, and low-grade inflammation in gastric/duodenal tissues. High-dose WWSG significantly improved gastric emptying and intestinal propulsion, upregulated GAS, 5-HT, and VIP, and downregulated SS expression in serum and tissues (P<0.05, P<0.01). Immunohistochemistry and Western blot demonstrated that SCF and c-Kit protein expression was decreased in the model group (P<0.05, P<0.01), which was reversed by WWSG intervention (P<0.05). ConclusionWWSG exerts therapeutic effects on FD with spleen-stomach deficiency cold syndrome in rats, potentially by regulating the SCF/c-Kit signaling pathway to enhance gastrointestinal motility.
6.Recent Advances of Immune Checkpoint Inhibitors in Treatment of Cervical Cancer
Haojie QIN ; Zhifan ZUO ; Dan CHEN ; Jia LIU ; Shan JIN ; Yang ZHANG ; Yongpeng WANG
Cancer Research on Prevention and Treatment 2025;52(10):848-854
As a hot spot in clinical research today, immune checkpoint inhibitor has been recommended by guidelines in the first- and second-line treatments of advanced cervical cancer as immune monotherapy or combination therapy. It has also achieved good efficacy in clinical practice. In locally advanced cervical cancer, immune checkpoint inhibitors have been included in the guidelines for adjuvant therapy, and good tumor regression effects have been achieved in clinical practice. Based on the results of existing trials, immune checkpoint inhibitors have also shown good clinical potential as neoadjuvant therapy. Furthermore, the issue of immunotherapy rechallenge has increasingly captured clinicians’ attention, offering a potential new therapeutic strategy for cervical cancer patients with prior immunotherapy exposure. In this article, the clinical application and research progress of immune checkpoint inhibitors in the treatment of cervical cancer in recent years are summarized to provide valuable ideas and directions for clinical treatment.
7.Health risk assessment of heavy metals and metalloids in atmospheric PM2.5 from Inner Mongolia Autonomous Region in 2023
Jiake ZHU ; Shengmei YANG ; Yuhan QIN ; Nana WEI ; Wenqian ZHANG ; Xinrui JIA ; Wenyu ZHANG ; Xuanhao BAI ; Minghui YIN ; Li ZHANG ; Huan LI ; Duoduo WU ; Xuanzhi YUE ; Yaochun FAN
Journal of Environmental and Occupational Medicine 2025;42(10):1201-1208
Background The Inner Mongolia Autonomous Region is a vast area with a wide array of ecological environments, resulting in considerable regional variations in air pollution characteristics. Current research is limited by a scarcity of systematic, region-wide studies and risk assessments. Objective To assess the health risks associated with inhalation exposure to nine heavy metal and metalloid elements in atmospheric fine particulate matter (PM2.5) for the population of the Inner Mongolia Autonomous Region. Methods From the 10th to the 16th of each month throughout 2023, atmospheric PM2.5 samples were collected at designated monitoring sites in 12 leagues (cities) across the Inner Mongolia Autonomous Region to analyze the characteristics and trends in concentration. The health risk assessment model developed by the United States Environmental Protection Agency was employed to evaluate both the non-carcinogenic and carcinogenic risks associated with the heavy metal elements beryllium (Be), cadmium (Cd), chromium (Cr), hydrargyrum (Hg), plumbum (Pb), manganese (Mn), and nickel (Ni) and the metalloid elements stibium (Sb) and arsenic (As). Results In 2023, a total of
8.Detection of five tick-borne pathogens in Maanshan City,Anhui Province,China
Guo-Dong YANG ; Kun YANG ; Liang-Liang JIANG ; Ming WU ; Ying HONG ; Ke-Xia XIANG ; Jia HE ; Lei GONG ; Dan-Dan SONG ; Ming-Jia BAO ; Xing-Zhou LI ; Tian QIN ; Yan-Hua WANG
Chinese Journal of Zoonoses 2024;40(4):308-314
Here,5 important pathogens carried by ticks in Maanshan City,Anhui Province,China were identified.In to-tal,642 ticks were collected from 13 villages around Maanshan City and identified by morphological and mitochondrial COI genes.The 16S rRNA gene of Francisella tularensis,ssrA gene of Bartonella,16S rRNA,ompA and ompB genes of Rickett-sia,16S rRNA and gltA genes of Anaplasma,and groEL and rpoB genes of Coxiella were sequenced.Reference sequences were retrieved from a public database.Phylogenetic trees were constructed with MEG A1 1.0 software.In total,36 Rickettsiae isolates were detected in 640 Haemaphysalis longicornis ticks,which included 20 isolates of Rickettsia heilongjian-gensis,16 of Candidatus Rickettsia jingxinensis,2 of Ana-plasma bovis,and 186 of Coxiella-like endosymbiont.R.hei-longjiangensis HY2 detected in this study and Anhui B8 strain,Ca.R.jingxinensis QL3 and those from Shanxi Prov-ince and Jiangsu Province,A.bovis JX4 and those from Shanxi Province were clustered on the same branch.Overall,17 ticks had combined infections and none of the 5 bacteria were detected in two Amblyomma testudinarium ticks.This is the first report of Ca.R.jingxinensis detected in H.longicornis ticks from Anhui Province.It is recommended that the two types of Rickettsia that cause spotted fever and A.bovis should be reported to local health authorities to initiate appropriate prevention and control measures.
9.Genome Sequencing,Probiotic Analysis,and Oxalate Degradation Modification of Limosilactobacillus reuteri Q35
Dong-Yu NIU ; Ling-Hui KONG ; Xiang-Yong LIU ; Jia-Yang QIN
Chinese Journal of Biochemistry and Molecular Biology 2024;40(11):1585-1595
Limosilactobacillus reuteri is a microbe intricately linked to humans and animal health.A thor-ough assessment of its safety and potential benefits is imperative prior to its application in human and ani-mals.In this investigation,we performed a comprehensive analysis encompassing genome sequencing,genomic analysis,and phenotypic characterization of L.reuteri Q35,an exceptionally proficient producer of reuterin.The whole genome sequencing results showed that the complete genome sequence spans 2145158 bp with a GC content of 38.9% and encompasses 2121 genes.Initial identification of antibiotic-re-sistant genes,virulence factors,and toxin-coding genes in the genome substantiated the strain' s low-risk status.Subsequent tests for antibiotic resistance,acute oral toxicology,and hemolysis further confirmed its elevated safety level.The genome of L.reuteri Q35 was found to contain genes associated with adhe-sion and stress tolerance.Following exposure to artificial gastric juice and bile salt,the strain exhibited a higher survival rate and demonstrated a strong scavenging ability for hydroxyl free radicals in antioxidant capacity tests.These findings suggested that L.reuteri Q35 possesses unique probiotic properties.Addi-tionally,the genome of strain Q35 harbors three truncated oxaloyl-CoA decarboxylase genes (oxc1,oxc2 and oxc3),overexpression of which resulted in a significant increase in ammonium oxalate degradation from 29.5% to 48.8%.These findings highlight that L.reuteri Q35 exhibits both favorable safety charac-teristics alongside beneficial properties,making it a promising candidate for treating metabolic disorders such as hyperoxaluria.
10.Risk factors for bronchopulmonary dysplasia in twin preterm infants:a multicenter study
Yu-Wei FAN ; Yi-Jia ZHANG ; He-Mei WEN ; Hong YAN ; Wei SHEN ; Yue-Qin DING ; Yun-Feng LONG ; Zhi-Gang ZHANG ; Gui-Fang LI ; Hong JIANG ; Hong-Ping RAO ; Jian-Wu QIU ; Xian WEI ; Ya-Yu ZHANG ; Ji-Bin ZENG ; Chang-Liang ZHAO ; Wei-Peng XU ; Fan WANG ; Li YUAN ; Xiu-Fang YANG ; Wei LI ; Ni-Yang LIN ; Qian CHEN ; Chang-Shun XIA ; Xin-Qi ZHONG ; Qi-Liang CUI
Chinese Journal of Contemporary Pediatrics 2024;26(6):611-618
Objective To investigate the risk factors for bronchopulmonary dysplasia(BPD)in twin preterm infants with a gestational age of<34 weeks,and to provide a basis for early identification of BPD in twin preterm infants in clinical practice.Methods A retrospective analysis was performed for the twin preterm infants with a gestational age of<34 weeks who were admitted to 22 hospitals nationwide from January 2018 to December 2020.According to their conditions,they were divided into group A(both twins had BPD),group B(only one twin had BPD),and group C(neither twin had BPD).The risk factors for BPD in twin preterm infants were analyzed.Further analysis was conducted on group B to investigate the postnatal risk factors for BPD within twins.Results A total of 904 pairs of twins with a gestational age of<34 weeks were included in this study.The multivariate logistic regression analysis showed that compared with group C,birth weight discordance of>25%between the twins was an independent risk factor for BPD in one of the twins(OR=3.370,95%CI:1.500-7.568,P<0.05),and high gestational age at birth was a protective factor against BPD(P<0.05).The conditional logistic regression analysis of group B showed that small-for-gestational-age(SGA)birth was an independent risk factor for BPD in individual twins(OR=5.017,95%CI:1.040-24.190,P<0.05).Conclusions The development of BPD in twin preterm infants is associated with gestational age,birth weight discordance between the twins,and SGA birth.

Result Analysis
Print
Save
E-mail