1.Therapeutic Study on The Inhibition of Neuroinflammation in Ischemic Stroke by Induced Regulatory T Cells
Tian-Fang KANG ; Ai-Qing MA ; Li-Qi CHEN ; Han GONG ; Jia-Cheng OUYANG ; Fan PAN ; Hong PAN ; Lin-Tao CAI
Progress in Biochemistry and Biophysics 2025;52(4):946-956
ObjectiveNeuroinflammation plays a crucial role in both the onset and progression of ischemic stroke, exerting a significant impact on the recovery of the central nervous system. Excessive neuroinflammation can lead to secondary neuronal damage, further exacerbating brain injury and impairing functional recovery. As a result, effectively modulating and reducing neuroinflammation in the brain has become a key therapeutic strategy for improving outcomes in ischemic stroke patients. Among various approaches, targeting immune regulation to control inflammation has gained increasing attention. This study aims to investigate the role of in vitro induced regulatory T cells (Treg cells) in suppressing neuroinflammation after ischemic stroke, as well as their potential therapeutic effects. By exploring the mechanisms through which Tregs exert their immunomodulatory functions, this research is expected to provide new insights into stroke treatment strategies. MethodsNaive CD4+ T cells were isolated from mouse spleens using a negative selection method to ensure high purity, and then they were induced in vitro to differentiate into Treg cells by adding specific cytokines. The anti-inflammatory effects and therapeutic potential of Treg cells transplantation in a mouse model of ischemic stroke was evaluated. In the middle cerebral artery occlusion (MCAO) model, after Treg cells transplantation, their ability to successfully migrate to the infarcted brain region and their impact on neuroinflammation levels were examined. To further investigate the role of Treg cells in stroke recovery, the changes in cytokine expression and their effects on immune cell interactions was analyzed. Additionally, infarct size and behavioral scores were measured to assess the neuroprotective effects of Treg cells. By integrating multiple indicators, the comprehensive evaluation of potential benefits of Treg cells in the treatment of ischemic stroke was performed. ResultsTreg cells significantly regulated the expression levels of both pro-inflammatory and anti-inflammatory cytokines in vitro and in vivo, effectively balancing the immune response and suppressing excessive inflammation. Additionally, Treg cells inhibited the activation and activity of inflammatory cells, thereby reducing neuroinflammation. In the MCAO mouse model, Treg cells were observed to accumulate in the infarcted brain region, where they significantly reduced the infarct size, demonstrating their neuroprotective effects. Furthermore, Treg cell therapy notably improved behavioral scores, suggesting its role in promoting functional recovery, and increased the survival rate of ischemic stroke mice, highlighting its potential as a promising therapeutic strategy for stroke treatment. ConclusionIn vitro induced Treg cells can effectively suppress neuroinflammation caused by ischemic stroke, demonstrating promising clinical application potential. By regulating the balance between pro-inflammatory and anti-inflammatory cytokines, Treg cells can inhibit immune responses in the nervous system, thereby reducing neuronal damage. Additionally, they can modulate the immune microenvironment, suppress the activation of inflammatory cells, and promote tissue repair. The therapeutic effects of Treg cells also include enhancing post-stroke recovery, improving behavioral outcomes, and increasing the survival rate of ischemic stroke mice. With their ability to suppress neuroinflammation, Treg cell therapy provides a novel and effective strategy for the treatment of ischemic stroke, offering broad application prospects in clinical immunotherapy and regenerative medicine.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.A Sensor for Detection of Breast Tumor with Three-dimensional Electrical Impedance Tomography
Kai LIU ; An-Qi LI ; Fang LI ; Cheng-Jun ZHU ; Hang TIAN ; Jia-Feng YAO
Chinese Journal of Analytical Chemistry 2024;52(2):248-255,中插16-中插18
An intensive breast array sensor was designed based on three-dimensional electrical impedance tomography in this work.Firstly,an electrical impedance sensor for detection of breast cancer was developed.The sensor adopted the integrated design of excitation electrode array and ground electrode to achieve structural simplification.It realized electric field densification through conical matrix and double-layer circumferentially arranged electrode array and improved the detection accuracy of target object through taper optimization.Secondly,the imaging system was designed,and the sensor was optimized by numerical simulation.The simulation results showed that halving the number of electrodes did not affect imaging accuracy of the sensor,but could improve the imaging speed.Finally,the performance of the sensor was verified by experiment.The signal-to-noise ratio and channel consistency of the system were at a good level.The sensor was used to reconstruct three-dimensional image of the experimental model with relative volume of the detection field of 0.4%.The image correlation coefficient of the single target imaging was above 0.6 and the position of the double target object could be clearly identified,and thus the visual detection of breast cancer was realized.
6.Improved unilateral puncture PVP based on 3D printing technology for the treatment of osteoporotic vertebral com-pression fracture
Wei-Li JIANG ; Tao LIU ; Qing-Bo ZHANG ; Hui CHEN ; Jian-Zhong BAI ; Shuai WANG ; Jia-Wei CHENG ; Ya-Long GUO ; Gong ZHOU ; Guo-Qi NIU
China Journal of Orthopaedics and Traumatology 2024;37(1):7-14
Objective To investigate the clinical effect of unilateral percutaneous vertebroplasty(PVP)combined with 3D printing technology for the treatment of thoracolumbar osteoporotic compression fracture.Methods A total of 77 patients with thoracolumbar osteoporotic compression fractures from October 2020 to April 2022 were included in the study,all of which were vertebral body compression fractures caused by trauma.According to different treatment methods,they were di-vided into experimental group and control group.Thirty-two patients used 3D printing technology to improve unilateral transpedicle puncture vertebroplasty in the experimental group,there were 5 males and 27 females,aged from 63 to 91 years old with an average of(77.59±8.75)years old.Forty-five patients were treated with traditional bilateral pedicle puncture vertebroplasty,including 7 males and 38 females,aged from 60 to 88 years old with an average of(74.89±7.37)years old.Operation time,intraoperative C-arm X-ray times,anesthetic dosage,bone cement injection amount,bone cement diffusion good and good rate,complications,vertebral height,kyphotic angle(Cobb angle),visual analogue scale(VAS),Oswestry disability index(ODI)and other indicators were recorded before and after surgery,and statistically analyzed.Results All patients were followed up for 6 to 23 months,with preoperative imaging studies,confirmed for thoracolumbar osteoporosis com-pression fractures,two groups of patients with postoperative complications,no special two groups of patients'age,gender,body mass index(BMI),time were injured,the injured vertebral distribution had no statistical difference(P>0.05),comparable data.Two groups of patients with bone cement injection,bone cement dispersion rate,preoperative and postoperative vertebral body height,protruding after spine angle(Cobb angle),VAS,ODI had no statistical difference(P>0.05).The operative time,intra-operative fluoroscopy times and anesthetic dosage were statistically different between the two groups(P<0.05).Compared with the traditional bilateral puncture group,the modified unilateral puncture group combined with 3D printing technology had shorter operation time,fewer intraoperative fluoroscopy times and less anesthetic dosage.The height of anterior vertebral edge,kyphosis angle(Cobb angle),VAS score and ODI of the affected vertebrae were statistically different between two groups at each time point after surgery(P<0.05).Conclusion In the treatment of thoracolumbar osteoporotic compression fractures,3D printing technology is used to improve unilateral puncture PVP,which is convenient and simple,less trauma,short operation time,fewer fluoroscopy times,satisfactory distribution of bone cement,vertebral height recovery and kyphotic Angle correction,and good functional improvement.
7.Clinical effects of percutaneous elastic intramedullary nail assisted by arthrography for the treatment of radial neck fractures in children
Hui-Min ZHOU ; Yi-Wen XU ; Chun-Jie TAO ; Jiang-Rong FAN ; Jing-Yang YOU ; Jia-Cheng RUAN ; Si-Qi SHEN ; Zhen WANG ; Yong ZHENG
China Journal of Orthopaedics and Traumatology 2024;37(9):899-904
Objective To explore clinical effect of closed reduction percutaneous elastic intramedullary nail assisted by arthrography in the treatment of radial neck fracture in children.Methods A retrospective analysis was performed on 23 chil-dren with radial neck fracture treated with arthrography assisted closed reduction and percutaneous elastic intramedullary nail internal fixation(arthrography with elastic nail group)from January 2019 to December 2022,including 12 males and 11 fe-males,aged from 2 to 12 years old with an average of(7.36±1.89)years old;According to Judet fracture types,14 children were type Ⅲ and 9 children were type Ⅳ.In addition,23 children with radial neck fracture were selected from January 2015 to December 2018 who were treated with closed reduction and percutaneous elastic intramedullary nail fixation(elastic nail group),including 11 males and 12 females,aged from 2 to 14 years old with an average of(7.50±1.91)years old;Judet classi-fication included 15 children were type Ⅲ and 8 children were type Ⅳ.Operative time and intraoperative fluoroscopy times were compared between two groups.Metaizeau evaluation criteria was used to evaluate fracture reduction,and Tibone-Stoltz evaluation criteria was used to evaluate functional recovery of elbow between two groups.Results Both groups were followed up for 12 to 24 months with an average of(16.56±6.34)months.Operative time and intraoperative fluoroscopy times of elastic nail group were(56.64±19.27)min and(21.13±7.87)times,while those of joint angiography with elastic nail group were(40.33±1 1.50)min and(12.10±3.52)times;there were difference between two groups(P<0.05).According to Metaizeau evaluation,11 patients got excellent result,9 good and 3 fair in joint angiography with elastic nail group,while in elastic nail group,5 ex-cellent,13 good,4 acceptable,and 1 poor;the difference between two groups was statistically significant(P<0.05).According to Tibone-Stoltz criteria,14 patients got excellent result,8 good,and 1 fair in joint arthrography with elastic nail group;while in elastic nail group,12 patients got excellent result,9 good,1 fair and 1 poor;there was no significant difference between two groups(P>0.05).Conclusion Compared to percutaneous elastic intramedullary nail fixation,closed reduction assisted by arthrography has advantages of reduced operation time,decreased intraoperative fluoroscopy frequency,and improved fracture reduction.Arthrography enables clear visualization of the anatomical structures of radius,head,neck,bone,and cartilage in children,facilitating comprehensive display of fracture reduction and brachioradial joint alignment.This technique more pre-cisely guides the depth of elastic intramedullary nail implantation in radius neck,thereby enhancing surgical efficiency and success rate.
8.Clinical effect of arthroscopic repair with metal suture anchor on type Ⅱ superior labral anterior to posterior lesion of the youth
Shan-Cheng GUO ; Jia-Liang LIU ; Zhi-Qi HU ; Jian LUO
Journal of Regional Anatomy and Operative Surgery 2024;33(6):513-516
Objective To observe the clinical effect of arthroscopic repair with metal suture anchor on type Ⅱ superior labral anterior to posterior(SLAP)lesion of the youth.Methods The clinical data of 32 young patients with type Ⅱ SLAP lesion who underwent arthroscopic repair with metal suture anchor were retrospectively analyzed.The postoperative complications of patients were counted.The visual analogue scale(VAS)score was used to evaluate the pain of patients.Rowe shoulder scoring system,Constant-Murley scoring system and American Shoulder and Elbow Surgeons(ASES)scoring system were used to evaluate the shoulder joint function.Results All the 32 patients successfully completed the operation,and they were followed up for 12 to 27 months,with the mean follow-up time of 15 months.After operation,the symptoms of shoulder pain and limited movement of 32 patients were significantly relieved,without complications such as shoulder joint infection,shoulder joint instability,or neurovascular injury.The postoperative VAS score,Rowe score,Constant-Murley score and ASES score of all patients were better than those before operation(P<0.05).Conclusion Arthroscopic repair with metal suture anchor on type Ⅱ SLAP lesion of the youth can achieve satisfactory clinical outcomes.
9.Establishment and evaluation of animal model of filum terminale traction tethered cord syndrome
Qing-Yu JIANG ; Ai-Jia SHANG ; Xu-Dong SHI ; Hao-Feng CHENG ; Tian-Qi SU ; Yan WU
Journal of Regional Anatomy and Operative Surgery 2024;33(11):985-990
Objective To establish a new animal model of filum terminale traction tethered cord syndrome to explore its pathogenesis.Methods Sixteen New Zealand white rabbits were randomly divided into the traction group and the sham group,with 8 rabbits in each group.The traction group used silk thread to establish a model of filum terminale traction tethered cord syndrome,while the sham group only cut the filum terminale without traction.After 8 weeks,the behavioral Talov score,lumbosacral MRI examination,somatosensory evoked potential detection,urodynamic index test and pathological analysis were completed.Results At the 8th week after surgery,the hindlimb injury was obvious in the traction group,and the Talov scores at the 4th and 8th weeks after operation were lower than those in the sham group(P<0.001).The lumbosacral MRI results at 8 weeks after surgery showed that the distal filum terminale was pulled by silk thread,with bladder abnormal enlargement in sagital MRI in the traction group,while axial MRI showed the spinal cord within the spinal canal was subjected to mechanical forces in the downward and dorsal directions;the sagittal and axial MRI of the sham group showed that the spinal cord was located in the middle of the spinal canal and the bladder size was normal.At the 8th week after surgery,the amplitude in the traction group was significantly lower than that in the sham group(P<0.001),and the amplitude decreased by more than 50% .The overall latency period in the traction group was slightly longer than that in the sham group(P<0.05).The results of urodynamic examination showed that the maximum bladder capacity in the traction group was significantly higher than that in the sham group(Z=-3.361,P<0.001),the bladder pressure was significantly lower than that in the sham group(Z=-3.361,P<0.001),and the bladder compliance was significantly higher than that in the sham group(P<0.001).Pathological staining showed that the traction of the filum terminale on the spinal cord led to nerve tissue damage and degeneration of bladder epithelial cells.Conclusion This study successfully established a model of filum terminale traction tethered cord syndrome of New Zealand white rabbits,which can provide reference for exploring the pathogenesis of tethered cord and understanding the pathological process of spinal cord injury.
10.Antimicrobial resistance and molecular epidemiological characteristics of Campylobacter in children in Guangdong Province from 2020 to 2022
Jia-Jun LIU ; Dong-Mei HE ; Jing XU ; Qi CHENG ; Ya-Hui SHI ; Fang-Zhu OUYANG ; Bi-Xia KE
Chinese Journal of Zoonoses 2024;40(10):950-958
This study was aimed at understanding the detection rate,drug resistance characteristics,virulence characteris-tics,multi-locus sequence typing,and other molecular epidemic and pathogenic characteristics of Campylobacter jejuni and Campylobacter coli in children in Guangdong Province from 2020 to 2022.Anal swabs or stool samples of suspected infection cases in children from 2020 to 2022 were collected from two hospitals in Guangzhou,Guangdong Province.Campylobacter was isolated and cultured through the filtration method,and identified with a microbial mass spectrometry system;antibiotic resist-ance was analyzed with the agar dilution method;bacterial genome nucleic acids were extracted,and whole-genome sequencing was conducted;and drug resistance genes,virulence genes,multi-locus sequence typing,and phylogenetic analysis based on whole-genome single nucleotide polymorphisms were analyzed from whole-genome sequencing results.First,53 strains of Campy-lobacter were detected through continuous routine monitoring in this study,with a positive detection rate of 2.94%.Among them,Campylobacter jejuni accounted for 81.13%(43/53)and Campylobacter coli accounted for 18.87%(10/53).In addition,16 strains of Campylobacter were screened through multi-pathogen surveillance,including 11 strains of Campylobacter jejuni and 5 strains of Campylobacter coli.Drug resistance ex-periments and whole genome sequencing were conducted on 46 Campylobacter isolates,including 33 isolates of Campylobacter jejuni and 13 isolates of Campylobacter coli.The resistance rate of Campylobacter to erythromycin,a widely used clinical treatment,was21.73%(10/46);that to tetracycline was 80.43%(37/46);those to the quinolone antibiotics nalidixic acid and ciprofloxacin were 76.08%(35/46)and 71.73%(33/46)respectively;and that to chloramphenicol was lowest,at 2.17%(1/46).The drug resistance rate was generally higher for Campylobacter coli than Campylobacter jejuni,and the differences in the indicators of erythromycin,gentamicin,streptomycin,telithromycin,and clindamycin were statistically significant.A total of 30 isolates of multidrug-resistant Campylobacter were detected,including nine multidrug-resistant phenotypes.Whole-ge-nome sequence analysis indicated that 46 Campylobacter isolates carried antibiotic resistance genes for antibiotics such as quino-lones,tetracyclines,β-lactams,and aminoglycosides,and carried 128 virulence factor genes in five categories.All 46 isolates of Campylobacter were identified as 35 ST type through MLST typing,and phylogenetic analysis indicated no obvious dominant ST type.Campylobacter coli had more SNPs than Campylobacter jejuni.In conclusion,the positive detection rate of Campy-lobacter in Guangzhou City,Guangdong Province stabilized from 2020 to 2022,and the detection rate of Campylobacter jejuni was higher than that of Campylobacter coli.Campylobacter isolates were resistant to tetracyclines and quinolone,and showed a wide spectrum of multi-drug resistance,which was relatively severe among Campylobacter coli.Resistance genes and drug-resistant phenotypes were correlated and had predictive significance.The virulence genes of Campylobacter jejuni were more a-bundant than those of Campylobacter coli,possibly because of the higher detection rate and pathogenicity of Campylobacter jejuni.The phylogenetic tree showed clear branches with high genetic diversity and no clearly dominant clonal group.

Result Analysis
Print
Save
E-mail