1.Applications of EEG Biomarkers in The Assessment of Disorders of Consciousness
Zhong-Peng WANG ; Jia LIU ; Long CHEN ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(4):899-914
Disorders of consciousness (DOC) are pathological conditions characterized by severely suppressed brain function and the persistent interruption or loss of consciousness. Accurate diagnosis and evaluation of DOC are prerequisites for precise treatment. Traditional assessment methods are primarily based on behavioral scales, which are inherently subjective and rely on observable behaviors. Moreover, traditional methods have a high misdiagnosis rate, particularly in distinguishing minimally conscious state (MCS) from vegetative state/unresponsive wakefulness syndrome (VS/UWS). This diagnostic uncertainty has driven the exploration of objective, reliable, and efficient assessment tools. Among these tools, electroencephalography (EEG) has garnered significant attention for its non-invasive nature, portability, and ability to capture real-time neurodynamics. This paper systematically reviews the application of EEG biomarkers in DOC assessment. These biomarkers are categorized into 3 main types: resting-state EEG features, task-related EEG features, and features derived from transcranial magnetic stimulation-EEG (TMS-EEG). Resting-state EEG biomarkers include features based on spectrum, microstates, nonlinear dynamics, and brain network metrics. These biomarkers provide baseline representations of brain activity in DOC patients. Studies have shown their ability to distinguish different levels of consciousness and predict clinical outcomes. However, because they are not task-specific, they are challenging to directly associate with specific brain functions or cognitive processes. Strengthening the correlation between resting-state EEG features and consciousness-related networks could offer more direct evidence for the pathophysiological mechanisms of DOC. Task-related EEG features include event-related potentials, event-related spectral modulations, and phase-related features. These features reveal the brain’s responses to external stimuli and provide dynamic information about residual cognitive functions, reflecting neurophysiological changes associated with specific cognitive, sensory, or behavioral tasks. Although these biomarkers demonstrate substantial value, their effectiveness rely on patient cooperation and task design. Developing experimental paradigms that are more effective at eliciting specific EEG features or creating composite paradigms capable of simultaneously inducing multiple features may more effectively capture the brain activity characteristics of DOC patients, thereby supporting clinical applications. TMS-EEG is a technique for probing the neurodynamics within thalamocortical networks without involving sensory, motor, or cognitive functions. Parameters such as the perturbational complexity index (PCI) have been proposed as reliable indicators of consciousness, providing objective quantification of cortical dynamics. However, despite its high sensitivity and objectivity compared to traditional EEG methods, TMS-EEG is constrained by physiological artifacts, operational complexity, and variability in stimulation parameters and targets across individuals. Future research should aim to standardize experimental protocols, optimize stimulation parameters, and develop automated analysis techniques to improve the feasibility of TMS-EEG in clinical applications. Our analysis suggests that no single EEG biomarker currently achieves an ideal balance between accuracy, robustness, and generalizability. Progress is constrained by inconsistencies in analysis methods, parameter settings, and experimental conditions. Additionally, the heterogeneity of DOC etiologies and dynamic changes in brain function add to the complexity of assessment. Future research should focus on the standardization of EEG biomarker research, integrating features from resting-state, task-related, and TMS-EEG paradigms to construct multimodal diagnostic models that enhance evaluation efficiency and accuracy. Multimodal data integration (e.g., combining EEG with functional near-infrared spectroscopy) and advancements in source localization algorithms can further improve the spatial precision of biomarkers. Leveraging machine learning and artificial intelligence technologies to develop intelligent diagnostic tools will accelerate the clinical adoption of EEG biomarkers in DOC diagnosis and prognosis, allowing for more precise evaluations of consciousness states and personalized treatment strategies.
2.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires
3.Effects of continued use of targeted therapy on patients with pulmonary arterial hypertension and complicated by hemoptysis.
Zhong-Chao WANG ; Xiu-Min HAN ; Yao ZUO ; Na DONG ; Jian-Ming WANG ; Li-Li MENG ; Jia-Wang XIAO ; Ming ZHAO ; Yuan MI ; Qi-Guang WANG
Journal of Geriatric Cardiology 2025;22(3):404-410
4.Specific effect of inserted sham acupuncture and its impact on the estimation of acupuncture treatment effect in randomized controlled trials: A systematic survey.
Xiao-Chao LUO ; Jia-Li LIU ; Ming-Hong YAO ; Ye-Meng CHEN ; Arthur Yin FAN ; Fan-Rong LIANG ; Ji-Ping ZHAO ; Ling ZHAO ; Xu ZHOU ; Xiao-Ying ZHONG ; Jia-Hui YANG ; Bo LI ; Ying ZHANG ; Xin SUN ; Ling LI
Journal of Integrative Medicine 2025;23(6):630-640
BACKGROUND:
The use of inserted sham acupuncture as a placebo in randomized controlled trials (RCTs) is controversial, because it may produce specific effects that cause an underestimation of the effect of acupuncture treatment.
OBJECTIVE:
This systematic survey investigates the magnitude of insert-specific effects of sham acupuncture and whether they affect the estimation of acupuncture treatment effects.
SEARCH STRATEGY:
PubMed, Embase and Cochrane Central Register of Controlled Trials were searched to identify acupuncture RCTs from their inception until December 2022.
INCLUSION CRITERIA:
RCTs that evaluated the effects of acupuncture compared to sham acupuncture and no treatment.
DATA EXTRACTION AND ANALYSIS:
The total effect measured for an acupuncture treatment group in RCTs were divided into three components, including the natural history and/or regression to the mean effect (controlled for no-treatment group), the placebo effect, and the specific effect of acupuncture. The first two constituted the contextual effect of acupuncture, which is mimicked by a sham acupuncture treatment group. The proportion of acupuncture total effect size was considered to be 1. The proportion of natural history and/or regression to the mean effect (PNE) and proportional contextual effect (PCE) of included RCTs were pooled using meta-analyses with a random-effect model. The proportion of acupuncture placebo effect was the difference between PCE and PNE in RCTs with non-inserted sham acupuncture. The proportion of insert-specific effect of sham acupuncture (PIES) was obtained by subtracting the proportion of acupuncture placebo effect and PNE from PCE in RCTs with inserted sham acupuncture. The impact of PIES on the estimation of acupuncture's treatment effect was evaluated by quantifying the percentage of RCTs that the effect of outcome changed from no statistical difference to statistical difference after removing PIES in the included studies, and the impact of PIES was externally validated in other acupuncture RCTs with an inserted sham acupuncture group that were not used to calculate PIES.
RESULTS:
This analysis included 32 studies with 5492 patients. The overall PNE was 0.335 (95% confidence interval [CI], 0.255-0.415) and the PCE of acupuncture was 0.639 (95% CI, 0.567-0.710) of acupuncture's total effect. The proportional contribution of the placebo effect to acupuncture's total effect was 0.191, and the PIES was 0.189. When we modeled the exclusion of the insert-specific effect of sham acupuncture, the acupuncture treatment effect changed from no difference to a significant difference in 45.45% of the included RCTs, and in 40.91% of the external validated RCTs.
CONCLUSION
The insert-specific effect of sham acupuncture in RCTs represents 18.90% of acupuncture's total effect and significantly affects the evaluation of the acupuncture treatment effect. More than 40% of RCTs that used inserted sham acupuncture would draw different conclusions if the PIES had been controlled for. Considering the impact of the insert-specific effect of sham acupuncture, caution should be taken when using inserted sham acupuncture placebos in RCTs. Please cite this article as: Luo XC, Liu JL, Yao MH, Chen YM, Fan AY, Liang FR, Zhao JP, Zhao L, Zhou X, Zhong XY, Yang JH, Li B, Zhang Y, Sun X, Li L. Specific effect of inserted sham acupuncture and its impact on the estimation of acupuncture treatment effect in randomized controlled trials: A systematic survey. J Integr Med. 2025; 23(6):630-640.
Acupuncture Therapy/methods*
;
Humans
;
Randomized Controlled Trials as Topic
;
Placebo Effect
;
Placebos
;
Treatment Outcome
5.Short-term Effects of Fine Particulate Matter and its Constituents on Acute Exacerbations of Chronic Bronchitis: A Time-stratified Case-crossover Study.
Jing Wei ZHANG ; Jian ZHANG ; Peng Fei LI ; Yan Dan XU ; Xue Song ZHOU ; Xiu Li TANG ; Jia QIU ; Zhong Ao DING ; Ming Jia XU ; Chong Jian WANG
Biomedical and Environmental Sciences 2025;38(3):389-393
6.Role of Hedgehog signaling pathway in muscle bone symbiosis in osteo-sarcopenia
Yan-Dong LIU ; Qiang DENG ; Zhong-Feng LI ; Ran-Dong PENG ; Yu-Rong WANG ; Jia-Ming LI ; Ping-Yi MA ; Jian-Qiang DU
The Chinese Journal of Clinical Pharmacology 2024;40(16):2433-2437
This article elaborates on the complex cross-talk and close relationship between muscles and bones involved in this disease,as well as its pathogenesis.It also summarizes that the difficulty of its treatment lies in the need to simultaneously consider both muscles and bones.And elaborated on the key role of the Hedgehog signaling pathway in embryonic development,tissue morphology establishment,and human tissue regeneration and repair.Investigated the remodeling effect of the Hedgehog signaling pathway on skeletal muscle from three aspects:Proliferation and differentiation of muscle stem cells,precursor cell and muscle fiber generation,inhibition of inflammation,and regulation of immunity;this article elucidates the role of the Hedgehog signaling pathway in bone reconstruction from two aspects.
7.Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
Shou-Wu WU ; Shao-Kun LIN ; Zhong-Zhu NIAN ; Xin-Wen WANG ; Wei-Nian LIN ; Li-Ming ZHUANG ; Zhi-Sheng WU ; Zhi-Wei HUANG ; A-Min WANG ; Ni-Li GAO ; Jia-Wen CHEN ; Wen-Ting YUAN ; Kai-Xian LU ; Jun LIAO
Progress in Biochemistry and Biophysics 2024;51(9):2182-2193
ObjectiveTo investigate the effect of mucin 1 (MUC1) on the proliferation and apoptosis of nasopharyngeal carcinoma (NPC) and its regulatory mechanism. MethodsThe 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital. The expression of MUC1 was measured by real-time quantitative PCR (qPCR) in the patients with PNC. The 5-8F and HNE1 cells were transfected with siRNA control (si-control) or siRNA targeting MUC1 (si-MUC1). Cell proliferation was analyzed by cell counting kit-8 and colony formation assay, and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells. The qPCR and ELISA were executed to analyze the levels of TNF-α and IL-6. Western blot was performed to measure the expression of MUC1, NF-кB and apoptosis-related proteins (Bax and Bcl-2). ResultsThe expression of MUC1 was up-regulated in the NPC tissues, and NPC patients with the high MUC1 expression were inclined to EBV infection, growth and metastasis of NPC. Loss of MUC1 restrained malignant features, including the proliferation and apoptosis, downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells. ConclusionDownregulation of MUC1 restrained biological characteristics of malignancy, including cell proliferation and apoptosis, by inactivating NF-κB signaling pathway in NPC.
8.Chemical constituents of dichloromethane fraction from Hypericum perforatum
Yi-Yun ZHANG ; Zhu-Zhen HAN ; Qian ZHANG ; Jia WANG ; Ming-Sai CHENG ; Zhen-Zhong WANG ; Ying-Bo YANG ; Wei XIAO
Chinese Traditional Patent Medicine 2024;46(5):1552-1558
AIM To study the chemical constituents of dichloromethane fraction from Hypericum perforatum L.METHODS The dichloromethane fraction from H.perforatum was isolated and purified by silica gel,ODS,Sephadex LH-20,semi-preparative HPLC and etc.The structures of obtained compounds were identified by physicochemical properties and spectral data.RESULTS Eleven compounds were isolated and identified as hypernorpoleketone A(1),α-onocerin(2),(3R)-thunberginol C(3),2-geranyloxy-1-(2-methylpropanoyl)-phloroglucinol(4),4,6-dihydroxy-2-O-(3″,7″-dimethyl-2″,6″-octadienyl)-1-(2′-methylbutanoyl)benzene(5),norhyperpalum G(6),garsubellin A(7),garsubellin B(8),(2″R/S)-kellerine C(9),kobusone(10),eriodictyol(11).CONCLUSION Compound 1 is a new compound.Compounds 2-3 are isolated from the plants of family Guttiferae for the first time.Compounds 4-10 are isolated from this plant for the first time.
9.Expert consensus on ethical requirements for artificial intelligence (AI) processing medical data.
Cong LI ; Xiao-Yan ZHANG ; Yun-Hong WU ; Xiao-Lei YANG ; Hua-Rong YU ; Hong-Bo JIN ; Ying-Bo LI ; Zhao-Hui ZHU ; Rui LIU ; Na LIU ; Yi XIE ; Lin-Li LYU ; Xin-Hong ZHU ; Hong TANG ; Hong-Fang LI ; Hong-Li LI ; Xiang-Jun ZENG ; Zai-Xing CHEN ; Xiao-Fang FAN ; Yan WANG ; Zhi-Juan WU ; Zun-Qiu WU ; Ya-Qun GUAN ; Ming-Ming XUE ; Bin LUO ; Ai-Mei WANG ; Xin-Wang YANG ; Ying YING ; Xiu-Hong YANG ; Xin-Zhong HUANG ; Ming-Fei LANG ; Shi-Min CHEN ; Huan-Huan ZHANG ; Zhong ZHANG ; Wu HUANG ; Guo-Biao XU ; Jia-Qi LIU ; Tao SONG ; Jing XIAO ; Yun-Long XIA ; You-Fei GUAN ; Liang ZHU
Acta Physiologica Sinica 2024;76(6):937-942
As artificial intelligence technology rapidly advances, its deployment within the medical sector presents substantial ethical challenges. Consequently, it becomes crucial to create a standardized, transparent, and secure framework for processing medical data. This includes setting the ethical boundaries for medical artificial intelligence and safeguarding both patient rights and data integrity. This consensus governs every facet of medical data handling through artificial intelligence, encompassing data gathering, processing, storage, transmission, utilization, and sharing. Its purpose is to ensure the management of medical data adheres to ethical standards and legal requirements, while safeguarding patient privacy and data security. Concurrently, the principles of compliance with the law, patient privacy respect, patient interest protection, and safety and reliability are underscored. Key issues such as informed consent, data usage, intellectual property protection, conflict of interest, and benefit sharing are examined in depth. The enactment of this expert consensus is intended to foster the profound integration and sustainable advancement of artificial intelligence within the medical domain, while simultaneously ensuring that artificial intelligence adheres strictly to the relevant ethical norms and legal frameworks during the processing of medical data.
Artificial Intelligence/legislation & jurisprudence*
;
Humans
;
Consensus
;
Computer Security/standards*
;
Confidentiality/ethics*
;
Informed Consent/ethics*
10.Identification of CMAs of Jianwei Xiaoshi Tablet granules based on QbD concept and construction of their predictive model.
Xin-Hao WAN ; Zhi-Jian ZHONG ; Qing TAO ; Zi-Qian WANG ; Jia-Li LIAO ; Dong-Yin YANG ; Ming YANG ; Xiao-Rong LUO ; Zhen-Feng WU
China Journal of Chinese Materia Medica 2024;49(24):6565-6573
Identification of critical material attributes(CMAs) is a key issue in the quality control of large-scale TCM products like Jianwei Xiaoshi Tablets. This study focuses on the granules of Jianwei Xiaoshi Tablets, using tablet tensile strength as the primary quality attribute. A method for identifying the CMAs and a design space for the granules were established, along with a predictive model for the granule CMAs based on Fourier transform near-infrared spectroscopy(FT-NIR). First, granules of Jianwei Xiaoshi Tablets with different properties were prepared using a partial factorial design method from the design of experiments(DOE). The powder properties of the granules were measured. An orthogonal partial least squares(OPLS) model was established to correlate the powder properties with tensile strength. Based on the characteristics of the comprehensive variables extracted by OPLS, the independent variables with the greatest explanatory power for tensile strength were identified. FT-NIR technology was then employed to establish a predictive model for the granule CMAs. The final CMAs identified were hygroscopicity, moisture content, D_(50), collapse angle, mass flow rate, and tapped density. The coefficients of determination of the prediction set(R■) and relative percentage deviation(RPD) of the prediction set for flowability, D_(50), and moisture content were 0.891, 0.994, and 0.998; and 2.97, 12.4, and 20.7, respectively. The established OPLS model clearly identified the impact of various factors on tensile strength, demonstrating good fit results. The model exhibited high prediction accuracy and can be used for the rapid and accurate determination of CMAs in granules of Jianwei Xiaoshi Tablets.
Drugs, Chinese Herbal/chemistry*
;
Tablets/chemistry*
;
Tensile Strength
;
Quality Control
;
Spectroscopy, Fourier Transform Infrared
;
Spectroscopy, Near-Infrared

Result Analysis
Print
Save
E-mail