1.Four new sesquiterpenoids from the roots of Atractylodes macrocephala
Gang-gang ZHOU ; Jia-jia LIU ; Ji-qiong WANG ; Hui LIU ; Zhi-Hua LIAO ; Guo-wei WANG ; Min CHEN ; Fan-cheng MENG
Acta Pharmaceutica Sinica 2025;60(1):179-184
The chemical constituents in dried roots of
2.Applications of EEG Biomarkers in The Assessment of Disorders of Consciousness
Zhong-Peng WANG ; Jia LIU ; Long CHEN ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(4):899-914
Disorders of consciousness (DOC) are pathological conditions characterized by severely suppressed brain function and the persistent interruption or loss of consciousness. Accurate diagnosis and evaluation of DOC are prerequisites for precise treatment. Traditional assessment methods are primarily based on behavioral scales, which are inherently subjective and rely on observable behaviors. Moreover, traditional methods have a high misdiagnosis rate, particularly in distinguishing minimally conscious state (MCS) from vegetative state/unresponsive wakefulness syndrome (VS/UWS). This diagnostic uncertainty has driven the exploration of objective, reliable, and efficient assessment tools. Among these tools, electroencephalography (EEG) has garnered significant attention for its non-invasive nature, portability, and ability to capture real-time neurodynamics. This paper systematically reviews the application of EEG biomarkers in DOC assessment. These biomarkers are categorized into 3 main types: resting-state EEG features, task-related EEG features, and features derived from transcranial magnetic stimulation-EEG (TMS-EEG). Resting-state EEG biomarkers include features based on spectrum, microstates, nonlinear dynamics, and brain network metrics. These biomarkers provide baseline representations of brain activity in DOC patients. Studies have shown their ability to distinguish different levels of consciousness and predict clinical outcomes. However, because they are not task-specific, they are challenging to directly associate with specific brain functions or cognitive processes. Strengthening the correlation between resting-state EEG features and consciousness-related networks could offer more direct evidence for the pathophysiological mechanisms of DOC. Task-related EEG features include event-related potentials, event-related spectral modulations, and phase-related features. These features reveal the brain’s responses to external stimuli and provide dynamic information about residual cognitive functions, reflecting neurophysiological changes associated with specific cognitive, sensory, or behavioral tasks. Although these biomarkers demonstrate substantial value, their effectiveness rely on patient cooperation and task design. Developing experimental paradigms that are more effective at eliciting specific EEG features or creating composite paradigms capable of simultaneously inducing multiple features may more effectively capture the brain activity characteristics of DOC patients, thereby supporting clinical applications. TMS-EEG is a technique for probing the neurodynamics within thalamocortical networks without involving sensory, motor, or cognitive functions. Parameters such as the perturbational complexity index (PCI) have been proposed as reliable indicators of consciousness, providing objective quantification of cortical dynamics. However, despite its high sensitivity and objectivity compared to traditional EEG methods, TMS-EEG is constrained by physiological artifacts, operational complexity, and variability in stimulation parameters and targets across individuals. Future research should aim to standardize experimental protocols, optimize stimulation parameters, and develop automated analysis techniques to improve the feasibility of TMS-EEG in clinical applications. Our analysis suggests that no single EEG biomarker currently achieves an ideal balance between accuracy, robustness, and generalizability. Progress is constrained by inconsistencies in analysis methods, parameter settings, and experimental conditions. Additionally, the heterogeneity of DOC etiologies and dynamic changes in brain function add to the complexity of assessment. Future research should focus on the standardization of EEG biomarker research, integrating features from resting-state, task-related, and TMS-EEG paradigms to construct multimodal diagnostic models that enhance evaluation efficiency and accuracy. Multimodal data integration (e.g., combining EEG with functional near-infrared spectroscopy) and advancements in source localization algorithms can further improve the spatial precision of biomarkers. Leveraging machine learning and artificial intelligence technologies to develop intelligent diagnostic tools will accelerate the clinical adoption of EEG biomarkers in DOC diagnosis and prognosis, allowing for more precise evaluations of consciousness states and personalized treatment strategies.
3.Clinical trial of Morinda officinalis oligosaccharides in the continuation treatment of adults with mild and moderate depression
Shu-Zhe ZHOU ; Zu-Cheng HAN ; Xiu-Zhen WANG ; Yan-Qing CHEN ; Ya-Ling HU ; Xue-Qin YU ; Bin-Hong WANG ; Guo-Zhen FAN ; Hong SANG ; Ying HAI ; Zhi-Jie JIA ; Zhan-Min WANG ; Yan WEI ; Jian-Guo ZHU ; Xue-Qin SONG ; Zhi-Dong LIU ; Li KUANG ; Hong-Ming WANG ; Feng TIAN ; Yu-Xin LI ; Ling ZHANG ; Hai LIN ; Bin WU ; Chao-Ying WANG ; Chang LIU ; Jia-Fan SUN ; Shao-Xiao YAN ; Jun LIU ; Shou-Fu XIE ; Mao-Sheng FANG ; Wei-Feng MI ; Hong-Yan ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(6):815-819
Objective To observe the efficacy and safety of Morinda officinalis oligosaccharides in the continuation treatment of mild and moderate depression.Methods An open,single-arm,multi-center design was adopted in our study.Adult patients with mild and moderate depression who had received acute treatment of Morinda officinalis oligosaccharides were enrolled and continue to receive Morinda officinalis oligosaccharides capsules for 24 weeks,the dose remained unchanged during continuation treatment.The remission rate,recurrence rate,recurrence time,and the change from baseline to endpoint of Hamilton Depression Scale(HAMD),Hamilton Anxiety Scale(HAMA),Clinical Global Impression-Severity(CGI-S)and Arizona Sexual Experience Scale(ASEX)were evaluated.The incidence of treatment-related adverse events was reported.Results The scores of HAMD-17 at baseline and after treatment were 6.60±1.87 and 5.85±4.18,scores of HAMA were 6.36±3.02 and 4.93±3.09,scores of CGI-S were 1.49±0.56 and 1.29±0.81,scores of ASEX were 15.92±4.72 and 15.57±5.26,with significant difference(P<0.05).After continuation treatment,the remission rate was 54.59%(202 cases/370 cases),and the recurrence rate was 6.49%(24 cases/370 cases),the recurrence time was(64.67±42.47)days.The incidence of treatment-related adverse events was 15.35%(64 cases/417 cases).Conclusion Morinda officinalis oligosaccharides capsules can be effectively used for the continuation treatment of mild and moderate depression,and are well tolerated and safe.
4.Toxicity evaluation of alcohol extract of Polygonum multiflorum based on 3D hepatocyte ball model
Hua-Long SU ; Xiang-Cao YAO ; Jia-Min CHEN ; Bo-Hong CEN ; Ping WANG ; Zong-Zheng CHEN ; Zhong-Yuan XU
The Chinese Journal of Clinical Pharmacology 2024;40(9):1272-1276
Objective To explore the toxicity of Polygonum multiflorum alcohol extract on 3D hepatospheres.Methods Variations in culture conditions and cell ratios were implemented,followed by the assessment of cell sphere diameter,density,and roundness,aiming to explore the optimal culture conditions.The 3D hepatocyte spheres were divided into control group and experimental-L,-M,-H groups.The experimental-L,-M,-H groups were treated with 0.25,1.00 and 2.50 mg·mL-1 Polygounm multiforum alcohol extract,and the control group was given the same amount of culture medium.The cell viability of the cell spheroids was tested by CellTiter-Glo reagent,the expression level of liver function related genes was detected by fluorescent quantitative polymerase chain reaction(RT-qRCR).The toxicity of cell spheres was detected by double fluorescent staining of living and dead cells.Results The ideal culture condition of cell sphere was 500 cells per micropore,and the cell ratio was HepG2-Huvec-LX-2=8∶1∶1.It displayed the values of 0.91±0.07 for circularity,0.91±0.02 for firmness,1.12±0.14 for aspect ratio,and(170.97±14.79)μm for diameter.On the 3rd,7th,10th and 14th days,the expression levels of albumin(ALB)mRNA were 1.00±0.02,0.96±0.02,0.54±0.07,0.52±0.07,and the expression levels of cytochrome P450 1A2(CYP1A2)mRNA were 1.00±0.10,2.15±0.16,2.45±0.33,1.30±0.03,respectively.The expression levels of multidrug resistance protein 2(MPR2)in the control group and the experimental-L,-M,-H groups were 1.00±0.31,1.38±0.24,1.48±0.06 and 1.90±0.08,respectively;spheroid viability were(98.19±0.49)%,(88.53±0.90)%,(71.60±2.91)%and(56.65±5.41)%.There were statistically significant differences in the above indexes between the experimental-L,-M,-H groups and the control group(all P<0.05).Conclusion The established hepatocyte sphere co-culture model showed varying degrees of expression of phase Ⅰ/Ⅱ drug metabolism enzymes,transporters,and liver cell specific marker molecule albumin and can be used to evaluate the toxicity of multiflorum multiflorum,which provides further reference for the clinical application of multiflorum multiflorum.
5.Development of the robotic digestive endoscope system and an experimental study on mechanistic model and living animals (with video)
Bingrong LIU ; Yili FU ; Kaipeng LIU ; Deliang LI ; Bo PAN ; Dan LIU ; Hao QIU ; Xiaocan JIA ; Jianping CHEN ; Jiyu ZHANG ; Mei WANG ; Fengdong LI ; Xiaopeng ZHANG ; Zongling KAN ; Jinghao LI ; Yuan GAO ; Min SU ; Quanqin XIE ; Jun YANG ; Yu LIU ; Lixia ZHAO
Chinese Journal of Digestive Endoscopy 2024;41(1):35-42
Objective:To develop a robotic digestive endoscope system (RDES) and to evaluate its feasibility, safety and control performance by experiments.Methods:The RDES was designed based on the master-slave control system, which consisted of 3 parts: the integrated endoscope, including a knob and button robotic control system integrated with a gastroscope; the robotic mechanical arm system, including the base and arm, as well as the endoscopic advance-retreat control device (force-feedback function was designed) and the endoscopic axial rotation control device; the control console, including a master manipulator and an image monitor. The operator sit far away from the endoscope and controlled the master manipulator to bend the end of the endoscope and to control advance, retract and rotation of the endoscope. The air supply, water supply, suction, figure fixing and motion scaling switching was realized by pressing buttons on the master manipulator. In the endoscopy experiments performed on live pigs, 5 physicians each were in the beginner and advanced groups. Each operator operated RDES and traditional endoscope (2 weeks interval) to perform porcine gastroscopy 6 times, comparing the examination time. In the experiment of endoscopic circle drawing on the inner wall of the simulated stomach model, each operator in the two groups operated RDES 1∶1 motion scaling, 5∶1 motion scaling and ordinary endoscope to complete endoscopic circle drawing 6 times, comparing the completion time, accuracy (i.e. trajectory deviation) and workload.Results:RDES was operated normally with good force feedback function. All porcine in vivo gastroscopies were successful, without mucosal injury, bleeding or perforation. In beginner and advanced groups, the examination time of both RDES and ordinary endoscopy tended to decrease as the number of operations increased, but the decrease in time was greater for operating RDES than for operating ordinary endoscope (beginner group P=0.033; advanced group P=0.023). In the beginner group, the operators operating RDES with 1∶1 motion scaling or 5∶1 motion scaling to complete endoscopic circle drawing had shorter completion time [1.68 (1.40, 2.17) min, 1.73 (1.47, 2.37) min VS 4.13 (2.27, 5.16) min, H=32.506, P<0.001], better trajectory deviation (0.50±0.11 mm, 0.46±0.11 mm VS 0.82±0.26 mm, F=38.999, P<0.001], and less workload [42.00 (30.00, 50.33) points, 43.33 (35.33, 54.00) points VS 52.67 (48.67, 63.33) points, H=20.056, P<0.001] than operating ordinary endoscope. In the advanced group, the operators operating RDES with 1∶1 or 5∶1 motion scaling to complete endoscopic circle drawing had longer completion time than operating ordinary endoscope [1.72 (1.37, 2.53) min, 1.57 (1.25, 2.58) min VS 1.15 (0.86, 1.58) min, H=13.233, P=0.001], but trajectory deviation [0.47 (0.13, 0.57) mm, 0.44 (0.39, 0.58) mm VS 0.52 (0.42, 0.59) mm, H=3.202, P=0.202] and workload (44.62±21.77 points, 41.24±12.57 points VS 44.71±17.92 points, F=0.369, P=0.693) were not different from those of the ordinary endoscope. Conclusion:The RDES enables remote control, greatly reducing the endoscopists' workload. Additionally, it gives full play to the cooperative motion function of the large and small endoscopic knobs, making the control more flexible. Finally, it increases motion scaling switching function to make the control of endoscope more flexible and more accurate. It is also easy for beginners to learn and master, and can shorten the training period. So it can provide the possibility of remote endoscopic control and fully automated robotic endoscope.
6.Predicting the Risk of Arterial Stiffness in Coal Miners Based on Different Machine Learning Models.
Qian Wei CHEN ; Xue Zan HUANG ; Yu DING ; Feng Ren ZHU ; Jia WANG ; Yuan Jie ZOU ; Yuan Zhen DU ; Ya Jun ZHANG ; Zi Wen HUI ; Feng Lin ZHU ; Min MU
Biomedical and Environmental Sciences 2024;37(1):108-111
7.Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
Shou-Wu WU ; Shao-Kun LIN ; Zhong-Zhu NIAN ; Xin-Wen WANG ; Wei-Nian LIN ; Li-Ming ZHUANG ; Zhi-Sheng WU ; Zhi-Wei HUANG ; A-Min WANG ; Ni-Li GAO ; Jia-Wen CHEN ; Wen-Ting YUAN ; Kai-Xian LU ; Jun LIAO
Progress in Biochemistry and Biophysics 2024;51(9):2182-2193
ObjectiveTo investigate the effect of mucin 1 (MUC1) on the proliferation and apoptosis of nasopharyngeal carcinoma (NPC) and its regulatory mechanism. MethodsThe 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital. The expression of MUC1 was measured by real-time quantitative PCR (qPCR) in the patients with PNC. The 5-8F and HNE1 cells were transfected with siRNA control (si-control) or siRNA targeting MUC1 (si-MUC1). Cell proliferation was analyzed by cell counting kit-8 and colony formation assay, and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells. The qPCR and ELISA were executed to analyze the levels of TNF-α and IL-6. Western blot was performed to measure the expression of MUC1, NF-кB and apoptosis-related proteins (Bax and Bcl-2). ResultsThe expression of MUC1 was up-regulated in the NPC tissues, and NPC patients with the high MUC1 expression were inclined to EBV infection, growth and metastasis of NPC. Loss of MUC1 restrained malignant features, including the proliferation and apoptosis, downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells. ConclusionDownregulation of MUC1 restrained biological characteristics of malignancy, including cell proliferation and apoptosis, by inactivating NF-κB signaling pathway in NPC.
8.Effects of Quorum Sensing Molecules on The Immune System
Wen-Min MA ; Xuan-Qi CHEN ; Hong-Xia MA ; Wen-Hui ZHANG ; Ling-Cong KONG ; Yu-Jia ZHOU ; Yuan-Yuan HU ; Yu JIA
Progress in Biochemistry and Biophysics 2024;51(11):2853-2867
In recent years, the development of host-acting antibacterial compounds has gradually become a hotspot in the field of anti-infection. Through research on the interaction mechanism between hosts and pathogenic bacteria, it has been found that the immune system is one of the key targets of host-acting antibacterial compounds. There is a communication system called the quorum sensing system in microorganisms, which mainly adjusts the structure of multi-microbial community and coordinates the group behavior. When the quorum sensing molecules secreted by microorganisms reach a threshold concentration, the quorum sensing system is activated and the overall gene expression of the microorganism is changed. In addition to regulating the density of microorganisms, quorum sensing molecules can also act as a link between pathogenic microorganisms and hosts, entering the host immune system and playing a role in affecting the morphological structure of immune cells, secreting cytokines, and inducing apoptosis, leading to host immune injury and causing host immune dysfunction.The key mechanism of 3-oxo-C12-HSL and other acyl-homoserine lactone (AHL) molecules in the innate immune system has been extensively studied. The lipid solubility allows AHLs to pass through the plasma membrane of host immune cells easily and induce dissolution of lipid domains. Then, it acts through signaling pathways such as p38MAPK and JAK-STAT, further influencing the immune cell’s defense response to bacteria and potentially leading to cell apoptosis. Additionally, the human lactonase paraoxonase 2, which can degrade3-oxo-C12-HSL, has been found in macrophage. It acts as an immune regulator that promotes macrophage phagocytosis of pathogens and is hypothesized to have the ability to reduce bacterial resistance. The mechanism of quorum sensing molecules in the adaptive immune system is less studied, the current results suggest that 3-oxo-C12-HSL is closely related to the mitochondrial pathway in host immune cells. For example, 3-oxo-C12-HSL induces apoptosis of Jurkat cells by inhibiting the expression of three mitochondrial electron transport chain proteins; it can also trigger mitochondrial dysfunction and induce mast cell apoptosis through Ca2+ signaling.Among the quorum sensing molecules, the AHLs have the greatest impact on plant immune system. The different effects on plant resistance depends on the chain lengths of acyl groups in bacterial-produced AHLs. Short-chain AHLs (C4-HSL and C8-HSL) induce plant resistance to pathogenic bacteria mainly through the auxin pathway and jasmonic acid pathway. Long-chain AHL (3-oxo-C14-HSL) is commonly used in hosts against fungal pathogens by inducing stomata defense responses, and the reaction process is related to salicylic acid. Diffusible signal factor molecules also interfere with the stomatal immunity caused by pathogens. It may act through the formin nanoclustering-mediated actin assembly and MPK3 pathway to inhibit the innate immunity of Arabidopsis. In summary, AHLs induced different plant pathways and affects the plant-bacteria interactions to trigger plant immunity. As a quorum sensing molecule of fungi, farnesol has similar effects on host immunity as AHLs, such as stimulating cytokine secretion and activating an inflammatory response. It also plays a unique role on dendritic cell differentiation and maturation. In addition, studies have found that farnesol has a protective effect on autoimmune encephalomyelitis, which may be related to its effect on the composition of intestinal microorganisms of the host.Therefore, targeting the host immune system and quorum sensing molecules to develop antibacterial compounds can effectively inhibit the invasion of pathogens and subserve the host to resist the influence of pathogenic bacteria. This article will review the mechanism of host immune responses triggered by important quorum sensing molecules, aiming to explore the targets of host-acting antibacterial compounds and provide new directions for the prevention or treatment of causative infectious sources and the development of related drugs.
9.GPR40 novel agonist SZZ15-11 regulates glucolipid metabolic disorders in spontaneous type 2 diabetic KKAy mice
Lei LEI ; Jia-yu ZHAI ; Tian ZHOU ; Quan LIU ; Shuai-nan LIU ; Cai-na LI ; Hui CAO ; Cun-yu FENG ; Min WU ; Lei-lei CHEN ; Li-ran LEI ; Xuan PAN ; Zhan-zhu LIU ; Yi HUAN ; Zhu-fang SHEN
Acta Pharmaceutica Sinica 2024;59(10):2782-2790
G protein-coupled receptor (GPR) 40, as one of GPRs family, plays a potential role in regulating glucose and lipid metabolism. To study the effect of GPR40 novel agonist SZZ15-11 on hyperglycemia and hyperlipidemia and its potential mechanism, spontaneous type 2 diabetic KKAy mice, human hepatocellular carcinoma HepG2 cells and murine mature adipocyte 3T3-L1 cells were used. KKAy mice were divided into four groups, vehicle group, TAK group, SZZ (50 mg·kg-1) group and SZZ (100 mg·kg-1) group, with oral gavage of 0.5% sodium carboxymethylcellulose (CMC), 50 mg·kg-1 TAK875, 50 and 100 mg·kg-1 SZZ15-11 respectively for 45 days. Fasting blood glucose, blood triglyceride (TG) and total cholesterol (TC), non-fasting blood glucose were tested. Oral glucose tolerance test and insulin tolerance test were executed. Blood insulin and glucagon were measured
10.Chemical diversity of azaphilones from the marine-derived fungus Talaromyces sp. HK1-18
Jia-cheng XUE ; Zhong-hui LI ; Bao-cong HAO ; Yao-yao ZHENG ; Xia-hao ZHU ; Zhi-xin CHEN ; Min CHEN
Acta Pharmaceutica Sinica 2024;59(5):1478-1483
GNPS-based mass spectrum-molecular networks is an effective strategy for rapidly identifying known natural products and discovering novel structures. The chemical diversity of azaphilones from the fermentation extracts of

Result Analysis
Print
Save
E-mail