1.Progress on antisense oligonucleotide in the field of antibacterial therapy
Jia LI ; Xiao-lu HAN ; Shi-yu SONG ; Jin-tao LIN ; Zhi-qiang TANG ; Zeng-ming WANG ; Liang XU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2025;60(2):337-347
With the widespread use of antibiotics, drug-resistant bacterial infections have become a significant threat to human health. Finding new antibacterial strategies that can effectively control drug-resistant bacterial infections has become an urgent task. Unlike small molecule drugs that target bacterial proteins, antisense oligonucleotide (ASO) can target genes related to bacterial resistance, pathogenesis, growth, reproduction and biofilm formation. By regulating the expression of these genes, ASO can inhibit or kill bacteria, providing a novel approach for the development of antibacterial drugs. To overcome the challenge of delivering antisense oligonucleotide into bacterial cells, various drug delivery systems have been applied in this field, including cell-penetrating peptides, lipid nanoparticles and inorganic nanoparticles, which have injected new momentum into the development of antisense oligonucleotide in the antibacterial realm. This review summarizes the current development of small nucleic acid drugs, the antibacterial mechanisms, targets, sequences and delivery vectors of antisense oligonucleotide, providing a reference for the research and development of antisense oligonucleotide in the treatment of bacterial infections.
2.Application of Engineered Exosomes in Tumor-targeted Therapy
Jia-Lu SONG ; Yi-Xin JIN ; Xing-Yu MU ; Yu-Huan JIANG ; Jing WANG
Progress in Biochemistry and Biophysics 2025;52(5):1140-1151
Tumors are the second leading cause of death worldwide. Exosomes are a type of extracellular vesicle secreted from multivesicular bodies, with particle sizes ranging from 40 to 160 nm. They regulate the tumor microenvironment, proliferation, and progression by transporting proteins, nucleic acids, and other biomolecules. Compared with other drug delivery systems, exosomes derived from different cells possess unique cellular tropism, enabling them to selectively target specific tissues and organs. This homing ability allows them to cross biological barriers that are otherwise difficult for conventional drug delivery systems to penetrate. Due to their biocompatibility and unique biological properties, exosomes can serve as drug delivery systems capable of loading various anti-tumor drugs. They can traverse biological barriers, evade immune responses, and specifically target tumor tissues, making them ideal carriers for anti-tumor therapeutics. This article systematically summarizes the methods for exosome isolation, including ultracentrifugation, ultrafiltration, size-exclusion chromatography (SEC), immunoaffinity capture, and microfluidics. However, these methods have certain limitations. A combination of multiple isolation techniques can improve isolation efficiency. For instance, combining ultrafiltration with SEC can achieve both high purity and high yield while reducing processing time. Exosome drug loading methods can be classified into post-loading and pre-loading approaches. Pre-loading is further categorized into active and passive loading. Active loading methods, including electroporation, sonication, extrusion, and freeze-thaw cycles, involve physical or chemical disruption of the exosome membrane to facilitate drug encapsulation. Passive loading relies on drug concentration gradients or hydrophobic interactions between drugs and exosomes for encapsulation. Pre-loading strategies also include genetic engineering and co-incubation methods. Additionally, we review approaches to enhance the targeting, retention, and permeability of exosomes. Genetic engineering and chemical modifications can improve their tumor-targeting capabilities. Magnetic fields can also be employed to promote the accumulation of exosomes at tumor sites. Retention time can be prolonged by inhibiting monocyte-mediated clearance or by combining exosomes with hydrogels. Engineered exosomes can also reshape the tumor microenvironment to enhance permeability. This review further discusses the current applications of exosomes in delivering various anti-tumor drugs. Specifically, exosomes can encapsulate chemotherapeutic agents such as paclitaxel to reduce side effects and increase drug concentration within tumor tissues. For instance, exosomes loaded with doxorubicin can mitigate cardiotoxicity and minimize adverse effects on healthy tissues. Furthermore, exosomes can encapsulate proteins to enhance protein stability and bioavailability or carry immunogenic cell death inducers for tumor vaccines. In addition to these applications, exosomes can deliver nucleic acids such as siRNA and miRNA to regulate gene expression, inhibit tumor proliferation, and suppress invasion. Beyond their therapeutic applications, exosomes also serve as tumor biomarkers for early cancer diagnosis. The detection of exosomal miRNA can improve the sensitivity and specificity of diagnosing prostate and pancreatic cancers. Despite their promising potential as drug delivery systems, challenges remain in the standardization and large-scale production of exosomes. This article explores the future development of engineered exosomes for targeted tumor therapy. Plant-derived exosomes hold potential due to their superior biocompatibility, lower toxicity, and abundant availability. Furthermore, the integration of exosomes with artificial intelligence may offer novel applications in diagnostics, therapeutics, and personalized medicine.
3.Case analysis on sequential latent occupational acute organotin poisoning
Lizhuang LU ; Linlin FAN ; Yinghua SONG ; Jia LIU ; Yongjian YAN
China Occupational Medicine 2025;52(3):308-312
A retrospective investigation was conducted to analyze the occupational exposure history, clinical manifestations, laboratory tests, imaging findings, and diagnosis and treatment of two cases of sequential latent occupational acute organotin poisoning. Both patients were successively employed in the same enterprise, engaged in crushing of waste polyvinyl chloride plastics, and thus potentially exposed to organotin hazards. Within several days of employment, both patients developed discomfort symptoms, and central nervous system impairment was observed, including short-term memory loss, slow response, and cognitive dysfunction. Hypokalemia was detected in both cases. Cranial magnetic resonance imaging showed abnormalities (multiple ischemic lesions in the bilateral frontal and parietal lobes), and urinary tin was positive. Symptoms relieved in both patients after treatments with tin-exclusion, potassium supplementation, and neurotrophic treatment. Based on the GBZ 26-2007 Diagnostic Criteria of Occupational Acute Trialkyltin Poisoning, and combined with worksite survey of occupational health and exclusion of cerebrovascular disease, viral encephalitis, and autoimmune encephalitis and other neurological disorders, both patients were diagnosed with mild occupational acute trialkyltin poisoning. Sequential latent occupational acute organotin poisoning is prone to misdiagnosis, with great difficulty in etiological identification. Comprehensive assessment of occupational exposure history and biomarker testing are essential for differential diagnosis. Early recognition and intervention improve prognosis, highlighting the need for strengthened occupational health supervision and protection in high-risk work posts.
4.Construction of Saccharomyces cerevisiae cell factory for efficient biosynthesis of ferruginol.
Mei-Ling JIANG ; Zhen-Jiang TIAN ; Hao TANG ; Xin-Qi SONG ; Jian WANG ; Ying MA ; Ping SU ; Guo-Wei JIA ; Ya-Ting HU ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(4):1031-1042
Diterpenoid ferruginol is a key intermediate in biosynthesis of active ingredients such as tanshinone and carnosic acid.However, the traditional process of obtaining ferruginol from plants is often cumbersome and inefficient. In recent years, the increasingly developing gene editing technology has been gradually applied to the heterologous production of natural products, but the production of ferruginol in microbe is still very low, which has become an obstacle to the efficient biosynthesis of downstream chemicals, such as tanshinone. In this study, miltiradiene was produced by integrating the shortened diterpene synthase fusion protein,and the key genes in the MVA pathway were overexpressed to improve the yield of miltiradiene. Under the shake flask fermentation condition, the yield of miltiradiene reached about(113. 12±17. 4)mg·L~(-1). Subsequently, this study integrated the ferruginol synthase Sm CYP76AH1 and Sm CPR1 to reconstruct the ferruginol pathway and thereby realized the heterologous synthesis of ferruginol in Saccharomyces cerevisiae. The study selected the best ferruginol synthase(Il CYP76AH46) from different plants and optimized the expression of pathway genes through redox partner engineering to increase the yield of ferruginol. By increasing the copy number of diterpene synthase, CYP450, and CPR, the yield of ferruginol reached(370. 39± 21. 65) mg·L~(-1) in the shake flask, which was increased by 21. 57-fold compared with that when the initial ferruginol strain JMLT05 was used. Finally, 1 083. 51 mg·L~(-1) ferruginol was obtained by fed-batch fermentation, which is the highest yield of ferruginol from biosynthesis so far. This study provides not only research ideas for other metabolic engineering but also a platform for the construction of cell factories for downstream products.
Saccharomyces cerevisiae/genetics*
;
Diterpenes/metabolism*
;
Metabolic Engineering
;
Fermentation
;
Abietanes
5.Mechanism of Zuogui Pills in regulating bone metabolism through OXT/OXTR feed-forward loop based on theory of "all marrows dominated by brain".
Yan-Chen FENG ; Ya-Li LIU ; Xue DANG ; Lu SUN ; Jin-Yao LI ; Jia-Bin SONG ; Shun-Zhi YANG ; Fei-Xiang LIU
China Journal of Chinese Materia Medica 2025;50(10):2761-2768
Grounded in the theory of "all marrows dominated by brain", this study explored the therapeutic mechanism of Zuogui Pills in modulating the oxytocin(OXT)/oxytocin receptor(OXTR) feed-forward loop in the treatment of postmenopausal osteoporosis(PMOP). A PMOP rat model was established using ovariectomy, and 70 Sprague-Dawley female rats were randomly divided into the following groups: sham operation group, model group, estradiol group(17β-estradiol, 0.05 mg·kg~(-1)·d~(-1)), Zuogui Pills low, medium, and high dose groups(0.2, 0.4, 0.8 g·kg~(-1)·d~(-1), respectively), and an antagonist group(atosiban 0.9 mg·kg~(-1)·d~(-1) + 17β-estradiol 0.05 mg·kg~(-1)·d~(-1) + Zuogui Pills 0.4 g·kg~(-1)·d~(-1)). After 12 weeks of model establishment, treatment was administered by gavage once daily for another 12 weeks, followed by sample collection. Enzyme-linked immunosorbent assay(ELISA) was used to measure serum levels of estrogen(E_2), OXT, tartrate-resistant acid phosphatase(TRACP-5b), and bone alkaline phosphatase(BALP). Histopathological changes in the left distal femur were observed through hematoxylin and eosin(HE) staining. Micro-computed tomography(micro-CT) was used to analyze the microstructure of the right distal femur. Western blot was employed to detect the expression levels of OXTR, small GTP-binding protein Ras, Raf1 proto-oncogene(Raf1), mitogen-activated protein kinase kinase 1/2(MEK1/2), and extracellular signal-regulated kinase 1/2(ERK1/2), and their phosphorylated forms in tibial tissues. Compared with the model group, the Zuogui Pills medium and high dose groups showed significantly increased levels of E_2, OXT, and BALP, with a notable decrease in TRACP-5b levels. Morphologically, the trabeculae in the left distal femur were more tightly arranged. The fibrous structure in the right distal femur was significantly improved in the Zuogui Pills high dose group. Additionally, the expression of OXTR, Ras, p-Raf1, p-MEK1/2, and p-ERK1/2 proteins in tibial tissues was significantly increased. The therapeutic effect of the Zuogui Pills high dose group was partially inhibited when an OXTR antagonist was administered. These findings suggest that Zuogui Pills can regulate the OXT/OXTR feed-forward loop, activate the phosphorylation of the downstream Ras/Raf1/MEK/ERK signaling pathway, and ultimately improve bone mineral density, thereby exerting therapeutic effects in PMOP.
Animals
;
Rats, Sprague-Dawley
;
Rats
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Oxytocin/genetics*
;
Receptors, Oxytocin/genetics*
;
Humans
;
Osteoporosis, Postmenopausal/genetics*
;
Bone and Bones/drug effects*
;
Brain/drug effects*
;
Bone Marrow/drug effects*
6.Mediating effect of sleep duration between depression symptoms and myopia in middle school students.
Wei DU ; Xu-Xiang YANG ; Ru-Shuang ZENG ; Chun-Yao ZHAO ; Zhi-Peng XIANG ; Yuan-Chun LI ; Jie-Song WANG ; Xiao-Hong SU ; Xiao LU ; Yu LI ; Jing WEN ; Dang HAN ; Qun DU ; Jia HE
Chinese Journal of Contemporary Pediatrics 2025;27(3):359-365
OBJECTIVES:
To explore the mediating role of sleep duration in the relationship between depression symptoms and myopia among middle school students.
METHODS:
This study was a cross-sectional research conducted using a stratified cluster random sampling method. A total of 1 728 middle school students were selected from two junior high schools and two senior high schools in certain urban areas and farms of the Xinjiang Production and Construction Corps. Questionnaire surveys and vision tests were conducted among the students. Spearman analysis was used to analyze the correlation between depression symptoms, sleep duration, and myopia. The Bootstrap method was employed to investigate the mediating effect of sleep duration between depression symptoms and myopia.
RESULTS:
The prevalence of myopia in the overall population was 74.02% (1 279/1 728), with an average sleep duration of (7.6±1.0) hours. The rate of insufficient sleep was 83.62% (1 445/1 728), and the proportion of students exhibiting depression symptoms was 25.29% (437/1 728). Correlation analysis showed significant negative correlations between visual acuity in both eyes and sleep duration with depressive emotions as measured by the Center for Epidemiologic Studies Depression Scale (with correlation coefficients of -0.064, -0.084, and -0.199 respectively; P<0.01), as well as with somatic symptoms and activities (with correlation coefficients of -0.104, -0.124, and -0.233 respectively; P<0.01) and interpersonal relationships (with correlation coefficients of -0.052, -0.059, and -0.071 respectively; P<0.05). The correlation coefficients for left and right eye visual acuity and sleep duration were 0.206 and 0.211 respectively (P<0.001). Sleep duration exhibited a mediating effect between depression symptoms and myopia (indirect effect=0.056, 95%CI: 0.029-0.088), with the mediating effect value for females (indirect effect=0.066, 95%CI: 0.024-0.119) being higher than that for males (indirect effect=0.042, 95%CI: 0.011-0.081).
CONCLUSIONS
Sleep duration serves as a partial mediator between depression symptoms and myopia in middle school students.
Humans
;
Myopia/etiology*
;
Male
;
Female
;
Depression/physiopathology*
;
Cross-Sectional Studies
;
Sleep
;
Adolescent
;
Students
;
Child
;
Time Factors
;
Sleep Duration
7.Real-world efficacy and safety of azvudine in hospitalized older patients with COVID-19 during the omicron wave in China: A retrospective cohort study.
Yuanchao ZHU ; Fei ZHAO ; Yubing ZHU ; Xingang LI ; Deshi DONG ; Bolin ZHU ; Jianchun LI ; Xin HU ; Zinan ZHAO ; Wenfeng XU ; Yang JV ; Dandan WANG ; Yingming ZHENG ; Yiwen DONG ; Lu LI ; Shilei YANG ; Zhiyuan TENG ; Ling LU ; Jingwei ZHU ; Linzhe DU ; Yunxin LIU ; Lechuan JIA ; Qiujv ZHANG ; Hui MA ; Ana ZHAO ; Hongliu JIANG ; Xin XU ; Jinli WANG ; Xuping QIAN ; Wei ZHANG ; Tingting ZHENG ; Chunxia YANG ; Xuguang CHEN ; Kun LIU ; Huanhuan JIANG ; Dongxiang QU ; Jia SONG ; Hua CHENG ; Wenfang SUN ; Hanqiu ZHAN ; Xiao LI ; Yafeng WANG ; Aixia WANG ; Li LIU ; Lihua YANG ; Nan ZHANG ; Shumin CHEN ; Jingjing MA ; Wei LIU ; Xiaoxiang DU ; Meiqin ZHENG ; Liyan WAN ; Guangqing DU ; Hangmei LIU ; Pengfei JIN
Acta Pharmaceutica Sinica B 2025;15(1):123-132
Debates persist regarding the efficacy and safety of azvudine, particularly its real-world outcomes. This study involved patients aged ≥60 years who were admitted to 25 hospitals in mainland China with confirmed SARS-CoV-2 infection between December 1, 2022, and February 28, 2023. Efficacy outcomes were all-cause mortality during hospitalization, the proportion of patients discharged with recovery, time to nucleic acid-negative conversion (T NANC), time to symptom improvement (T SI), and time of hospital stay (T HS). Safety was also assessed. Among the 5884 participants identified, 1999 received azvudine, and 1999 matched controls were included after exclusion and propensity score matching. Azvudine recipients exhibited lower all-cause mortality compared with controls in the overall population (13.3% vs. 17.1%, RR, 0.78; 95% CI, 0.67-0.90; P = 0.001) and in the severe subgroup (25.7% vs. 33.7%; RR, 0.76; 95% CI, 0.66-0.88; P < 0.001). A higher proportion of patients discharged with recovery, and a shorter T NANC were associated with azvudine recipients, especially in the severe subgroup. The incidence of adverse events in azvudine recipients was comparable to that in the control group (2.3% vs. 1.7%, P = 0.170). In conclusion, azvudine showed efficacy and safety in older patients hospitalized with COVID-19 during the SARS-CoV-2 omicron wave in China.
8.Cloning and functional analysis of GmMAX2b involved in disease resistance.
Jiahui FU ; Lin ZUO ; Weiqun HUANG ; Song SUN ; Liangyu GUO ; Min HU ; Peilan LU ; Shanshan LIN ; Kangjing LIANG ; Xinli SUN ; Qi JIA
Chinese Journal of Biotechnology 2025;41(7):2803-2817
The plant F-box protein more axillary growth 2 (MAX2) is a key factor in the signal transduction of strigolactones (SLs) and karrinkins (KARs). As the main component of the SKP1-CUL1-FBX (SCF) complex ubiquitin ligase E3, MAX2 is responsible for specifically recognizing the target proteins, suppressor of MAX2 1/SMAX1-like proteins (SMAX1/SMXLs), which would be degraded after ubiquitination. It can thereby regulate plant morphogenesis and stress responses. There exist homologous genes of MAX2 in the important grain and oil crop soybean (Glycine max). However, its role in plant defense responses has not been investigated yet. Here, GmMAX2b, a homologous gene of MAX2, was successfully cloned from stressed soybean. Bioinformatics analysis revealed that there were two MAX2 homologous genes, GmMAX2a and GmMAX2b, with a similarity of 96.2% in soybean. Their F-box regions were highly conserved. The sequence alignment and cluster analysis of plant MAX2 homologous proteins basically reflected the evolutionary relationship of plants and also suggested that soybean MAX2 might be a multifunctional protein. Expression analysis showed that plant pathogen infection and salicylic acid treatment induced the expression of GmMAX2b in soybean, which is consistent with that of MAX2 in Arabidopsis. Ectopic expression of GmMAX2b compensated for the susceptibility of Arabidopsis max2-2 mutant to pathogen, indicating that GmMAX2b positively regulated plant disease resistance. In addition, yeast two hybrid technology was used to explore the potential target proteins of GmMAX2b. The results showed that GmMAX2b interacted with SMXL6 and weakly interacted with SMXL2. In summary, GmMAX2b is a positive regulator in plant defense responses, and its expression is induced by pathogen infection and salicylic acid treatment. GmMAX2b might exert its effect through interaction with SMXL6 and SMXL2. This study expands the theoretical exploration of soybean disease resistant F-box and provides a scientific basis for future soybean disease resistant breeding.
Glycine max/metabolism*
;
Disease Resistance/genetics*
;
Plant Diseases/immunology*
;
Plant Proteins/genetics*
;
Cloning, Molecular
;
Gene Expression Regulation, Plant
;
F-Box Proteins/genetics*
;
Arabidopsis/genetics*
;
Phylogeny
9.Neutrophil-to-lymphocyte ratio may help predict pediatric testicular torsion in chlidren with acute scrotal pain before surgery
Xianya HE ; Chen WANG ; Yongjun YANG ; Junjie CHEN ; Xuecheng WU ; Zhuo LI ; Zhe LIU ; Guangqing SONG ; Yili TENG ; Jia CHEN ; Hongwei WANG ; Huayi ZHENG ; Yuanwei LI ; Qiang LU
Journal of Modern Urology 2024;29(9):785-789
Objective To explore the feasibility and accuracy of neutrophil-to-lymphocyte ratio(NLR)in the prediction of testicular torsion(TT)in children with acute scrotal pain.Methods A retrospective case-control study was performed on 158 pediatric patients with ultrasound suspicion of TT who underwent surgical testicular examination during Jan.2017 and Jan.2024.The patients were divided into TT group and non-TT group.Clinical data and laboratory data at admission were analyzed.Sensitivity and specificity of NLR to TT were determined with the area under the curve(AUC)represented on the receiver operating characteristic(ROC)curves.Results There were with no statistically significant differences in clinical data between the two groups(P>0.05).The NLR was significantly higher in the TT group than in the non-TT group[(4.82±2.37)vs.(2.85±0.75),P<0.05].The optimal cut-off value of TT predicted by NLR was 2.07,the AUC was 0.809(95%CI:0.709-0.909),and the sensitivity and specificity were 97.9%and 93.3%,respectively,which were significantly higher than other factors.Conclusion For suspicious ultrasound diagnosis of pediatric acute scrotal pain cases,NLR can be used to predict the possibility of TT and may help to evaluate the urgent surgical treatment in these patients.
10.Post-operative healthcare-associated infection influencing factors and me-diating effect of diagnosis-intervention packet payment differentials in colorectal cancer patients
Yu RONG ; Qian-Qian HUANG ; Jia-Yi OU ; Shu-Liang YU ; Ye-Ying SONG ; Wei-Qun LU ; Li-Ming REN ; Yao FU ; Jian-Hui LU
Chinese Journal of Infection Control 2024;23(11):1421-1429
Objective To explore the potential influencing factors of post-operative healthcare-associated infection(HAI)in colorectal cancer patients,as well as the mediating effect relationship between the influencing factors and the diagnosis-intervention packet(DIP)payment differentials.Methods Medical data of patients who underwent colorectal cancer surgery in a tertiary first-class cancer hospital in Guangzhou were retrospectively analyzed.According to HAI status,patients were divided into infection group and non-infection group.Baseline demographic information and differences in DIP payment differentials between two groups of patients were compared by rank sum test or chi-square test.The influence of each potential factor on the occurrence of HAI was analyzed by logistic re-gression.Mediating analysis was preformed by bootstrap method,and mediating effect of HAI and total hospitaliza-tion days on DIP payment differentials was evaluated.Results A total of 350 patients were included in analysis,50 were in the infection group and 300 in the non-infection group.The incidence of HAI was 14.29%.Logistic regres-sion analysis result showed that risk of HAI in patients with central venous catheterization ≥10.00 days was 13.558 times higher than that<10.00 days(P<0.001);risk of HAI in patients with urinary catheterization ≥3.00 days was 2.388 times higher than that<3.00 days(P=0.022).There were all statistically significant differences in DIP payment differentials among patients with different ages,prognostic nutritional index(PNI),HAI status,total length of hospitalization stay,duration of surgery,central venous catheterization days,and catheterization days(all P<0.05).The mediating analysis results showed that the occurrence of HAI resulted a change in DIP payment di-fferentials by affecting the total number of hospitalization days.The mediating effect value of total hospitalization days was 0.038,accounting for 35.68%of the total effect.Conclusion Medical institutions should pay attention to HAI resulting from prolonged central venous and urinary catheterization in patients underwent surgery for colorectal cancer,reducing the total length of hospital stay,thus reducing the overruns associated with the increased DIP pay-ment differentials.

Result Analysis
Print
Save
E-mail