1.Gut microbiota and osteoporotic fractures
Wensheng ZHAO ; Xiaolin LI ; Changhua PENG ; Jia DENG ; Hao SHENG ; Hongwei CHEN ; Chaoju ZHANG ; Chuan HE
Chinese Journal of Tissue Engineering Research 2025;29(6):1296-1304
BACKGROUND:Osteoporotic fracture is the most serious complication of osteoporosis.Previous studies have demonstrated that gut microbiota has a regulatory effect on skeletal tissue and that gut microbiota has an important relationship with osteoporotic fracture,but the causal relationship between the two is unclear. OBJECTIVE:To explore the causal relationship between gut microbiota and osteoporotic fractures using Mendelian randomization method. METHODS:The genome-wide association study(GWAS)datasets of gut microbiota and osteoporotic fracture were obtained from the IEU Open GWAS database and the Finnish database R9,respectively.Using gut microbiota as the exposure factor and osteoporotic fracture as the outcome variable,Mendelian randomization analyses with random-effects inverse variance weighted,MR-Egger regression,weighted median,simple model,and weighted model methods were performed to assess whether there is a causal relationship between gut microbiota and osteoporotic fracture.Sensitivity analyses were performed to test the reliability and robustness of the results.Reverse Mendelian randomization analyses were performed to further validate the causal relationship identified in the forward Mendelian randomization analyses. RESULTS AND CONCLUSION:The results of this Mendelian randomization analysis indicated a causal relationship between gut microbiota and osteoporotic fracture.Elevated abundance of Actinomycetales[odds ratio(OR)=1.562,95%confidence interval(CI):1.027-2.375,P=0.037),Actinomycetaceae(OR=1.561,95%CI:1.027-2.374,P=0.037),Actinomyces(OR=1.544,95%CI:1.130-2.110,P=0.006),Butyricicoccus(OR=1.781,95%CI:1.194-2.657,P=0.005),Coprococcus 2(OR=1.550,95%CI:1.068-2.251,P=0.021),Family ⅩⅢ UCG-001(OR=1.473,95%CI:1.001-2.168,P=0.049),Methanobrevibacter(OR=1.274,95%CI:1.001-1.621,P=0.049),and Roseburia(OR=1.429,95%CI:1.015-2.013,P=0.041)would increase the risk of osteoporotic fractures in patients.Elevated abundance of Bacteroidia(OR=0.660,95%CI:0.455-0.959,P=0.029),Bacteroidales(OR=0.660,95%CI:0.455-0.959,P=0.029),Christensenellacea(OR=0.725,95%CI:0.529-0.995,P=0.047),Ruminococcaceae(OR=0.643,95%CI:0.443-0.933,P=0.020),Enterorhabdus(OR=0.558,95%CI:0.395-0.788,P=0.001),Eubacterium rectale group(OR=0.631,95%CI:0.435-0.916,P=0.016),Lachnospiraceae UCG008(OR=0.738,95%CI:0.546-0.998,P=0.048),and Ruminiclostridium 9(OR=0.492,95%CI:0.324-0.746,P=0.001)would reduce the risk of osteoporotic fractures in patients.We identified 16 gut microbiota associated with osteoporotic fracture by the Mendelian randomization method.That is,using gut microbiota as the exposure factor and osteoporotic fracture as the outcome variable,eight gut microbiota showed positive causal associations with osteoporotic fracture and another eight gut microbiota showed negative causal associations with osteoporotic fracture.The results of this study not only identify new biomarkers for the early prediction of osteoporotic fracture and potential therapeutic targets in clinical practice,but also provide an experimental basis and theoretical basis for the study of improving the occurrence and prognosis of osteoporotic fracture through gut microbiota in bone tissue engineering.
2.Identification and drug sensitivity analysis of key molecular markers in mesenchymal cell-derived osteosarcoma
Haojun ZHANG ; Hongyi LI ; Hui ZHANG ; Haoran CHEN ; Lizhong ZHANG ; Jie GENG ; Chuandong HOU ; Qi YU ; Peifeng HE ; Jinpeng JIA ; Xuechun LU
Chinese Journal of Tissue Engineering Research 2025;29(7):1448-1456
BACKGROUND:Osteosarcoma has a complex pathogenesis and a poor prognosis.While advancements in medical technology have led to some improvements in the 5-year survival rate,substantial progress in its treatment has not yet been achieved. OBJECTIVE:To screen key molecular markers in osteosarcoma,analyze their relationship with osteosarcoma treatment drugs,and explore the potential disease mechanisms of osteosarcoma at the molecular level. METHODS:GSE99671 and GSE284259(miRNA)datasets were obtained from the Gene Expression Omnibus database.Differential gene expression analysis and Weighted Gene Co-expression Network Analysis(WGCNA)on GSE99671 were performed.Functional enrichment analysis was conducted using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes separately for the differentially expressed genes and the module genes with the highest positive correlation to the disease.The intersection of these module genes and differentially expressed genes was taken as key genes.A Protein-Protein Interaction network was constructed,and correlation analysis on the key genes was performed using CytoScape software,and hub genes were identified.Hub genes were externally validated using the GSE28425 dataset and text validation was conducted.The drug sensitivity of hub genes was analyzed using the CellMiner database,with a threshold of absolute value of correlation coefficient|R|>0.3 and P<0.05. RESULTS AND CONCLUSION:(1)Differential gene expression analysis identified 529 differentially expressed genes,comprising 177 upregulated and 352 downregulated genes.WGCNA analysis yielded a total of 592 genes with the highest correlation to osteosarcoma.(2)Gene Ontology enrichment results indicated that the development of osteosarcoma may be associated with extracellular matrix,bone cell differentiation and development,human immune regulation,and collagen synthesis and degradation.Kyoto Encyclopedia of Genes and Genomes enrichment results showed the involvement of pathways such as PI3K-Akt signaling pathway,focal adhesion signaling pathway,and immune response in the onset of osteosarcoma.(3)The intersection analysis revealed a total of 59 key genes.Through Protein-Protein Interaction network analysis,8 hub genes were selected,which were LUM,PLOD1,PLOD2,MMP14,COL11A1,THBS2,LEPRE1,and TGFB1,all of which were upregulated.(4)External validation revealed significantly downregulated miRNAs that regulate the hub genes,with hsa-miR-144-3p and hsa-miR-150-5p showing the most significant downregulation.Text validation results demonstrated that the expression of hub genes was consistent with previous research.(5)Drug sensitivity analysis indicated a negative correlation between the activity of methotrexate,6-mercaptopurine,and pazopanib with the mRNA expression of PLOD1,PLOD2,and MMP14.Moreover,zoledronic acid and lapatinib showed a positive correlation with the mRNA expression of PLOD1,LUM,MMP14,PLOD2,and TGFB1.This suggests that zoledronic acid and lapatinib may be potential therapeutic drugs for osteosarcoma,but further validation is required through additional basic experiments and clinical studies.
3.Correlation Between Neutrophil to Lymphocyte Ratio and eGFR in Diabetic Patients: A Cross-sectional Analysis Based on NHANES Data
Chunyu JIA ; Gangan WANG ; Jiahui WANG ; Gang CHEN ; Ke ZHENG ; Xuemei LI
Medical Journal of Peking Union Medical College Hospital 2025;16(2):379-385
To investigate the association between neutrophil to lymphocyte ratio (NLR) andestimated glomerular filtration rate (eGFR) in patients with diabetes using large-scale data. Across-sectional analysis was conducted using data from diabetic patients in the National Health and Nutrition Examination Survey database from 2009 to 2014. Differences in NLR between patients with and without chronickidney disease (CKD) were compared. Pearson correlation analysis and multiple linear regression models wereapplied to assess the relationship between NLR and eGFR. A total of 857 diabetic patients were included, with 190 (22.2%) having CKD and 667 (77.8%) without CKD. NLR was significantly higher in patients with CKD compared to those without CKD (2.94±1.69 vs.2.36±1.98, NLR is independently negatively associatedwith eGFR in diabetic patients, demonstrating potential clinical value as an indicator of kidney function declineand CKD risk in this population.
4.Evidence-based research on the nutritional and health effects of functional components of tea
Zhijian HE ; Yuping LI ; Fan BU ; Jia CUI ; Xinwen BI ; Yuanjie CUI ; Zhiyuan GUO ; Ming LI
Shanghai Journal of Preventive Medicine 2025;37(2):190-198
As a traditional nutritional and healthy cash crop in China, tea has certain significance in promoting human health and preventing and controlling chronic diseases. Studies have shown that the nutritional health effect of tea is due to its rich functional components, mainly including tea polyphenols, tea pigments, tea polysaccharides, theanine, alkaloids and other bioactive substances. At present, researchers from the academic circles have continuously carried out animal and human experiments on the health effects of various functional components of tea, which has accumulated abundant research data and materials. Based on this, this article reviews the literature on the nutritional and health effects of the main functional components of tea, and adopts the method of evidence-based research to screen and extract relevant data for qualitative and quantitative meta-analysis. Subsequently, the nutritional health effects of the five functional components of tea, namely tea polyphenols, tea pigments, tea polysaccharides, theanine, and alkaloids, are summarized and outlined. Studies have shown that tea polyphenols, tea pigments, tea polysaccharides, theanine and alkaloids have different health effects and are expected to play their unique roles in promoting human health and preventing and controlling diseases.
5.Therapeutic Study on The Inhibition of Neuroinflammation in Ischemic Stroke by Induced Regulatory T Cells
Tian-Fang KANG ; Ai-Qing MA ; Li-Qi CHEN ; Han GONG ; Jia-Cheng OUYANG ; Fan PAN ; Hong PAN ; Lin-Tao CAI
Progress in Biochemistry and Biophysics 2025;52(4):946-956
ObjectiveNeuroinflammation plays a crucial role in both the onset and progression of ischemic stroke, exerting a significant impact on the recovery of the central nervous system. Excessive neuroinflammation can lead to secondary neuronal damage, further exacerbating brain injury and impairing functional recovery. As a result, effectively modulating and reducing neuroinflammation in the brain has become a key therapeutic strategy for improving outcomes in ischemic stroke patients. Among various approaches, targeting immune regulation to control inflammation has gained increasing attention. This study aims to investigate the role of in vitro induced regulatory T cells (Treg cells) in suppressing neuroinflammation after ischemic stroke, as well as their potential therapeutic effects. By exploring the mechanisms through which Tregs exert their immunomodulatory functions, this research is expected to provide new insights into stroke treatment strategies. MethodsNaive CD4+ T cells were isolated from mouse spleens using a negative selection method to ensure high purity, and then they were induced in vitro to differentiate into Treg cells by adding specific cytokines. The anti-inflammatory effects and therapeutic potential of Treg cells transplantation in a mouse model of ischemic stroke was evaluated. In the middle cerebral artery occlusion (MCAO) model, after Treg cells transplantation, their ability to successfully migrate to the infarcted brain region and their impact on neuroinflammation levels were examined. To further investigate the role of Treg cells in stroke recovery, the changes in cytokine expression and their effects on immune cell interactions was analyzed. Additionally, infarct size and behavioral scores were measured to assess the neuroprotective effects of Treg cells. By integrating multiple indicators, the comprehensive evaluation of potential benefits of Treg cells in the treatment of ischemic stroke was performed. ResultsTreg cells significantly regulated the expression levels of both pro-inflammatory and anti-inflammatory cytokines in vitro and in vivo, effectively balancing the immune response and suppressing excessive inflammation. Additionally, Treg cells inhibited the activation and activity of inflammatory cells, thereby reducing neuroinflammation. In the MCAO mouse model, Treg cells were observed to accumulate in the infarcted brain region, where they significantly reduced the infarct size, demonstrating their neuroprotective effects. Furthermore, Treg cell therapy notably improved behavioral scores, suggesting its role in promoting functional recovery, and increased the survival rate of ischemic stroke mice, highlighting its potential as a promising therapeutic strategy for stroke treatment. ConclusionIn vitro induced Treg cells can effectively suppress neuroinflammation caused by ischemic stroke, demonstrating promising clinical application potential. By regulating the balance between pro-inflammatory and anti-inflammatory cytokines, Treg cells can inhibit immune responses in the nervous system, thereby reducing neuronal damage. Additionally, they can modulate the immune microenvironment, suppress the activation of inflammatory cells, and promote tissue repair. The therapeutic effects of Treg cells also include enhancing post-stroke recovery, improving behavioral outcomes, and increasing the survival rate of ischemic stroke mice. With their ability to suppress neuroinflammation, Treg cell therapy provides a novel and effective strategy for the treatment of ischemic stroke, offering broad application prospects in clinical immunotherapy and regenerative medicine.
6.Research progress on the improvement of myocardial fibrosis by traditional Chinese medicine through regulation of NLRP3 inflammasome
Rui ZHANG ; Jingshun YAN ; Fuyun JIA ; Kexin JIA ; Chenyang LIU ; Yan LIU ; Ye LI ; Qiang XU
China Pharmacy 2025;36(8):1008-1012
Myocardial fibrosis (MF), characterized by decreased cardiac function and myocardial compliance, is a pathological process and a progression factor in various cardiovascular diseases. The nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3 (NLRP3) inflammasome is closely related to the development of MF. Recent studies have shown that traditional Chinese medicine (TCM) can regulate the NLRP3 inflammasome to alleviate MF. Based on this, this article systematically summarizes the research progress on the mechanisms by which TCM regulates the NLRP3 inflammasome to improve MF. It is found that active ingredients of TCM, such as alkaloids (lycorine,vincristine,bufalin), saponins (astragaloside Ⅳ, diosgenin,ginsenoside Rg3), terpenoids (celastrol,oridonin), and phenols (polydatin,curcumin,phloridzin) as well as TCM formulas (Zhachong shisanwei pills,Zhilong huoxue tongyu capsules, Luqi formula) can inhibit the activation of the NLRP3 inflammasome, thereby suppressing the release of inflammatory factors such as interleukin-1β and IL-18, reducing inflammatory damage to myocardial tissue, alleviating excessive deposition of the extracellular matrix, and thus exerting the effect of improving MF.
7.Value of third lumbar skeletal muscle mass index in predicting the prognosis of patients with acute-on-chronic liver failure
Yewen HAN ; Jing LI ; Ninghui ZHAO ; Jia YAO ; Juan WANG
Journal of Clinical Hepatology 2025;41(4):698-702
ObjectiveTo investigate the value of third lumbar skeletal muscle mass index (L3-SMI) in predicting the long-term prognosis of patients with acute-on-chronic liver failure (ACLF), and to provide a useful tool for prognostic scoring of ACLF patients. MethodsA retrospective analysis was performed for the data of 126 patients who underwent abdominal computed tomography (CT) scanning and were diagnosed with ACLF in Shanxi Bethune Hospital from December 2017 to December 2021, including clinical indicators, biochemical parameters, and model for end-stage liver disease (MELD) score, and L3-SMI was calculated. The independent-samples t test was used for comparison of normally distributed continuous data between groups, and the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between groups; the chi-square test was used for comparison of categorical data between groups. The receiver operating characteristic (ROC) curve was used to assess the diagnostic value of L3-SMI and other variables (MELD score and Child-Pugh score), and the DeLong test was used for comparison of the area under the ROC curve (AUC). ResultsAmong the 126 patients enrolled, 44 (35%) died within 2 years and 82 (65%) survived. Compared with the survival group, the death group had significantly higher age, incidence rate of ascites, international normalized ratio, MELD score, and Child-Pugh score (all P<0.05) and a significantly lower value of L3-SMI [38.40 (35.95 — 46.29) cm²/m² vs 44.19 (40.20 — 48.58) cm²/m², Z=-2.855, P=0.004]. L3-SMI had an AUC of 0.720 in predicting 2-year mortality in ACLF patients, with a sensitivity of 63.6% and a specificity of 80.5%, and a combination of L3-SMI, MELD score, and Child-Pugh score had a significantly better AUC than a combination of MELD score and Child-Pugh score in predicting 2-year mortality (0.809 vs 0.757, Z=2.015, P<0.05). ConclusionL3-SMI has a high predictive value for the prognosis of ACLF patients, and the combination of L3-SMI、MELD score and Child-Pugh score has a higher predictive value for ACLF patients, and the inclusion of L3-SMI or sarcopenia in the conventional prognostic scores of ACLF patients may increase the ability to predict disease progression.
8.Preliminary exploration of differentiating and treating multiple system atrophy from the perspective of the eight extraordinary meridians
Di ZHAO ; Zhigang CHEN ; Nannan LI ; Lu CHEN ; Yao WANG ; Jing XUE ; Xinning ZHANG ; Chengru JIA ; Xuan XU ; Kaige ZHANG
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):392-397
Multiple system atrophy (MSA) is a rare neurodegenerative disease with complex clinical manifestations, presenting substantial challenges in clinical diagnosis and treatment. Its symptoms and the eight extraordinary meridians are potentially correlated; therefore, this article explores the association between MSA symptom clusters and the eight extraordinary meridians based on their circulation and physiological functions, as well as their treatment strategies. The progression from deficiency to damage in the eight extraordinary meridians aligns with the core pathogenesis of MSA, which is characterized by "the continuous accumulation of impacts from the vital qi deficiency leading to eventual damage". Liver and kidney deficiency and the emptiness of the eight extraordinary meridians are required for the onset of MSA; the stagnation of qi deficiency and the gradual damage to the eight extraordinary meridians are the key stages in the prolonged progression of MSA. The disease often begins with the involvement of the yin and yang qiao mai, governor vessel, thoroughfare vessel, and conception vessel before progressing to multiple meridian involvements, ultimately affecting all eight extraordinary meridians simultaneously. The treatment approach emphasizes that "the direct method may be used for joining battle, but indirect method will be needed in order to secure victory" and focuses on "eliminate pathogenic factors and reinforce healthy qi". Distinguishing the extraordinary meridians and focusing on the primary symptoms are pivotal to improving efficacy. Clinical treatment is aimed at the target, and tailored treatment based on careful clinical observation ensures precision in targeting the disease using the eight extraordinary meridians as the framework and core symptoms as the specific focus. Additionally, combining acupuncture, daoyin therapy, and other method may help prolong survival. This article classifies clinical manifestations based on the theory of the eight extraordinary meridians and explores treatment.
9.Research progress of internal limiting membrane peeling in the treatment of rhegmatogenous retinal detachment
Yuchen ZHANG ; Kejun LI ; Zhiyang JIA
International Eye Science 2025;25(6):933-937
Rhegmatogenous retinal detachment(RRD)is a vision-threatening ocular emergency with the potential risk of blindness. Pars plana vitrectomy(PPV)is the treatment of choice for RRD, especially for complex retinal detachments such as posterior pole retinal tears, grade B or higher proliferative vitreoretinopathy, and concomitant choroidal detachment. Although most patients achieve good anatomical restoration after surgery, some patients may still experience postoperative symptoms such as distorted vision, abnormal color perception, and lack of improvement in corrected visual acuity. Epiretinal membranes(ERM), as one of the most common complications after RRD, occur in 4% to 13% of cases, which not only affect the recovery of patients' postoperative vision, but also are frequently associated with visual distortion. In severe cases, a second surgical intervention may be required. In recent years, internal limiting membrane peeling(ILMP)has been introduced as an adjunctive procedure in the treatment of RRD, to facilitate retinal reorientation, reduce postoperative complications, and improve patients' postoperative visual quality and quality of life. However, previous studies on the effects of combined intraoperative ILMP on retinal anatomy and visual function recovery are limited. Therefore, this article reviews the mechanism, clinical application, challenges and research progress of ILMP in RRD, providing a reference for surgical decision making, disease assessment, and prognosis evaluation.
10.Mahoniae Caulis Alkaloids Ameliorate Depression by Regulating Synaptic Plasticity via cAMP Pathway
Junhui HE ; Chunlian JIA ; Kedao LAI ; Guili ZHOU ; Rongfei ZHOU ; Yi LI ; Dongmei LI ; Jiaxiu XIE ; Guining WEI ; Juying ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):132-140
ObjectiveTo explore the mechanisms associated with Mahoniae Caulis alkaloids (MA) in ameliorating depression by network pharmacology, molecular docking, and animal experiments. MethodsThe component targets of MA were obtained through Swiss Target Prediction and TCMIP database. The depression targets were collected through TCMIP, Genecards, HPO, DrugBank and OMIM database. The depression targets were collected through TCMIP, Genecards, HPO, DrugBank and OMIM database. Protein-protein interaction (PPI) network was constructed by protein interaction analysis (STRING) database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed through Bioinformatics (DAVID) database. The docking of components and targets was performed by AGFR. The mouse model of depression was established by intraperitoneal injection of corticosterone (CORT) once a day for 35 consecutive days. Sixty mice were randomly allocated into control (0.9% normal saline), model (CORT, 20 mg·kg-1), positive control (fluoxetine hydrochloride, 3.6 mg·kg-1), and MA (10, 5, and 2.5 mg·kg-1) groups. Each group was administrated with corresponding medicine or normal saline once a day for 28 consecutive days. The depression-like behavior of mice was observed. The pathological changes of prefrontal cortex in mice were observed by hematoxylin-eosin staining. Terminal deoxynucleotidyl dUTP transferase nick end labeling (TUNEL) was employed to observe the apoptosis of neurons in the prefrontal cortex. Enzyme-linked immunosorbent assay was employed to assess the serum levels of brain-derived neurotrophic factor (BDNF), dopamine (DA), 5-hydroxytryptamine (5-HT), and norepinephrine (NE) in mice. The mRNA levels of cyclic adenosine monophosphate (cAMP) pathway-related factors and inflammatory factors were determined by Real-time PCR. Western blot was employed to determine the expression of cAMP pathway-related factors and connexin 43 (Cx43). ResultsA total of 434 component targets and 545 depression targets were obtained, including 84 common targets, among which 10 core targets were screened out. GO analysis predicted 34 biological processes, 15 cell components, and 11 molecular functions. The KEGG pathways were mainly related to gap junction and cAMP signaling pathway. The core components had good binding affinity with the core targets. The results of animal experiments showed that compared with the control group, CORT prolonged the immobility time of mice in forced swimming and tail suspension tests (P<0.01), lowered the serum levels of NE, BDNF, and 5-HT (P<0.05), up-regulated the mRNA levels of nuclear factor-κB (NF-κB) and interleukin-6 (IL-6) in the brain tissue (P<0.05), and down-regulated the mRNA levels of cyclic adenosine monophosphate effector binding protein (CREB) and BDNF (P<0.05) and the protein levels of protein kinase (PRKACA), phosphorylation (p)-CREB/CREB, BDNF, and Cx43 (P<0.05) in the brain tissue. Compared with the model group, high-dose MA reduced the immobility time of mice in forced swimming (P<0.05) and tail suspension (P<0.01) tests, raised the serum levels of NE, BDNF, and 5-HT (P<0.01), down-regulated the mRNA level of NF-κB (P<0.01), and up-regulated the mRNA level of BDNF (P<0.01) and protein levels of PRKACA, p-CREB/CREB, BDNF, and Cx43 (P<0.05). ConclusionMA alleviates the CORT-induced depressive behavior of mice. It may play an antidepressant role by regulating cAMP signaling pathway and gap junction pathway, improving synaptic plasticity and gap junction function, and reducing neuroinflammation.


Result Analysis
Print
Save
E-mail