1.Cardiac MR tissue tracking technique for quantitatively evaluating myocardial strain of cardiac amyloidosis patients
Jiangkai HE ; Chen CUI ; Wei MA ; Zhi WANG ; Jia LIU ; Wei LI ; Kai ZHAO ; Rile NAI ; Shasha XU ; Jianxing QIU
Chinese Journal of Interventional Imaging and Therapy 2024;21(1):42-47
Objective To observe the feasibility of cardiac MR tissue tracking(CMR-TT)technique for quantitatively evaluating myocardial strain of patients with myocardial amyloidosis(CA).Methods Cardiac MRI were collected from 20 patients of immunoglobulin amyloid light-chain CA(AL-CA,group A),20 cases of transthyretin CA(ATTR-CA,group B)and 20 healthy subjects(group C),and myocardial strain parameters were obtained using CMR-TT technique.Left ventricular cardiac function parameters were compared among 3 groups,so were strain parameters of each myocardial segment of left ventricle and global myocardium,including 3D longitudinal strain(LS),3D radial strain(RS)and 3D circumferential strain(CS).Results Compared with those in group C,significant differences of left ventricular cardiac function parameters were found in both group A and B(all P<0.01),while no statistical difference was found between group A and B(all P>0.05).Except for apical segment RS(P=0.81),strain parameters in group A and B were both lower than those in group C(all P<0.01),while no significant difference was detected between group A and B(all P>0.05).Conclusion CMR-TT technique could be used to quantitatively evaluate left ventricular myocardial strain of CA patients.
2.Study on the characteristics of lymphocyte-specfic protein-tyrosine kinase methylation in the peripheral blood circulation of patients with rheumatoid arthritis
Lingxia XU ; Cen CHANG ; Ping JIANG ; Kai WEI ; Jia′nan ZHAO ; Yixin ZHENG ; Yu SHAN ; Yiming SHI ; Hua Ye JIN ; Yi SHEN ; Shicheng GUO ; Dongyi HE ; Jia LIU
Chinese Journal of Rheumatology 2024;28(3):155-161
Objective:To analyze the methylation characteristics of the lymphocyte-specific protein-tyrosine kinase (LCK) promoter region in the peripheral blood circulation of rheumatoid arthritis (RA) patients and its correlation with clinical indicators.Methods:Targeted methylation sequencing was used to compare the methylation levels of 7 CpG sites in the LCK promoter region in the peripheral blood of RA patients with healthy controls (HC) and osteoarthritis (OA) patients. Correlation analysis and ROC curve construction were performed with clinical information.Results:Non-parametric tests revealed that compared with HC [0.53(0.50, 0.57)] and OA patients [0.59(0.54, 0.62), H=47.17, P<0.001], RA patients [0.63(0.59, 0.68)] exhibited an overall increase in methylation levels. Simultaneously, when compared with the HC group [0.38(0.35, 0.41), 0.59(0.55, 0.63), 0.60(0.55, 0.64), 0.59(0.55, 0.63), 0.58(0.53, 0.62), 0.45(0.43, 0.49), 0.57(0.54, 0.61)], the RA group [0.46(0.42, 0.49), 0.70(0.65, 0.75), 0.70(0.66, 0.76), 0.70(0.65, 0.75), 0.69(0.64, 0.74), 0.55(0.51, 0.59), 0.68(0.63, 0.73)] showed a significant elevation in methylation levels at CpG sites cg05350315_60, cg05350315_80, cg05350315_95, cg05350315_101, cg05350315_104, cg05350315_128, and cg05350315_142, with statistically significant differences ( Z=-5.63, -5.89, -5.91, -5.89, -5.98, -5.95, -5.95, all P<0.001). Compared with the OA group [0.65(0.59, 0.69), 0.65(0.60, 0.69), 0.64(0.58, 0.68), 0.50(0.45, 0.54), 0.63(0.58, 0.67)], the RA group [0.70(0.66, 0.76), 0.70(0.65, 0.75), 0.69(0.64, 0.74), 0.55(0.51, 0.59), 0.68(0.63, 0.73)] exhibited a significant increase in methylation levels at CpG sites cg05350315_95, cg05350315_101, cg05350315_104, cg05350315_128, and cg05350315_142, with statistically significant differences ( Z=-3.56, -3.52, -3.60, -3.67, -3.62; P=0.036, 0.042, 0.031, 0.030, 0.030). Furthermore, Pearson correlation coefficient analysis revealed a positive correlation between the overall methylation level in this region and C-reactive protein (CRP) ( r=0.19, P=0.004) and erythrocyte sedimentation rate ( r=0.14, P=0.035). The overall methylation level of the LCK promoter region in the CRP (low) group [0.63 (0.58, 0.68)] was higher than that in the CRP (high) group [0.65(0.61, 0.70)], with statistically significant differences ( Z=2.60, P=0.009). Finally, by constru-cting a ROC curve, the discriminatory efficacy of peripheral blood LCK promoter region methylation levels for identifying RA patients, especially seronegative RA patients, from HC and OA groups was validated, with an AUC value of 0.78 (95% CI: 0.63, 0.93). Conclusion:This study provides insights into the methylation status and methylation haplotype patterns of the LCK promoter region in the peripheral blood of RA patients. The overall methylation level in this region is positively correlated with the level of inflammation and can be used to differentiate seronegative RA patients from the HC and OA patients.
3.Development of a High-throughput Sequencing Platform for Detection of Viral Encephalitis Pathogens Based on Amplicon Sequencing
Li Ya ZHANG ; Zhe Wen SU ; Chen Rui WANG ; Yan LI ; Feng Jun ZHANG ; Hui Sheng LIU ; He Dan HU ; Xiao Chong XU ; Yu Jia YIN ; Kai Qi YIN ; Ying HE ; Fan LI ; Hong Shi FU ; Kai NIE ; Dong Guo LIANG ; Yong TAO ; Tao Song XU ; Feng Chao MA ; Yu Huan WANG
Biomedical and Environmental Sciences 2024;37(3):294-302
Objective Viral encephalitis is an infectious disease severely affecting human health.It is caused by a wide variety of viral pathogens,including herpes viruses,flaviviruses,enteroviruses,and other viruses.The laboratory diagnosis of viral encephalitis is a worldwide challenge.Recently,high-throughput sequencing technology has provided new tools for diagnosing central nervous system infections.Thus,In this study,we established a multipathogen detection platform for viral encephalitis based on amplicon sequencing. Methods We designed nine pairs of specific polymerase chain reaction(PCR)primers for the 12 viruses by reviewing the relevant literature.The detection ability of the primers was verified by software simulation and the detection of known positive samples.Amplicon sequencing was used to validate the samples,and consistency was compared with Sanger sequencing. Results The results showed that the target sequences of various pathogens were obtained at a coverage depth level greater than 20×,and the sequence lengths were consistent with the sizes of the predicted amplicons.The sequences were verified using the National Center for Biotechnology Information BLAST,and all results were consistent with the results of Sanger sequencing. Conclusion Amplicon-based high-throughput sequencing technology is feasible as a supplementary method for the pathogenic detection of viral encephalitis.It is also a useful tool for the high-volume screening of clinical samples.
4.Accurate quantitative evaluation of MRI scanning noise based on laser vibrometry technology
Ke-Sheng WANG ; Pei-Jia XU ; Pei LIU ; Jing-Sheng SUN ; Ze-Kai LI ; Xu-Guang PENG ; Shuang-Shuang LI ; Qian-Hong HE ; Zhen LIU
Chinese Medical Equipment Journal 2024;45(10):20-24
Objective To carry out accurate quantative evaluation of MRI scanning noise based on laser vibrometry technology.Methods Skull and spine MRI was performed with mute and conventional sequences.A laser vibrometry device was used to sample the surface vibration noise at the outer edge of the inspection hole of MRI system according to GB/T 16539-1996 Acoustics—Determination of sound power levels of noise sources using vibration velocity—Measurement for seal machinery,and the indicators of sound power level,sound pressure level and perceived noise level obtained by the three calculation methods(LPN1,LPN2 and LPN3)were analyzed with some dedicated MRI noise analysis software.Results The peak sound pressure levels for conventional and mute sequences of skull scanning were 81 and 63 dB(A),respectively,and mute sequence reduced the noise level significantly;the peak sound pressure levels for conventional and mute sequences of spine scanning were 79 and 75 dB(A),respectively,and the noise reduction level was significantly lower than that of skull scanning.Significant differences in noise reduction were not found in spine scanning sequences,while were found in skull scanning sequences.During spine and skull scanning LPN1,LPN2 and LPN3 obtained by the three calculation methods of conventional and mute sequences were all higher than the overall sound power and overall pressure levels obviously.Conclusion Mute sequence can not realize linear noise reduction for the whole frequency band,the perceived noise of the human ear during MRI scanning is related directly to the scanning sequence,and there may be some bias when only one physical indicator is involved in the noise evaluation of MRI system.[Chinese Medical Equipment Journal,2024,45(10):20-24]
5.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
6.Knockdown of best1 Gene in Zebrafish Caused Abnormal Neuronal and Skeletal Development - A Subtype of Craniovertebral Junction Malformation?
Zhenlei LIU ; Kang LI ; Kai WANG ; Lei ZHANG ; Shanhang JIA ; He WANG ; Fengzeng JIAN ; Hao WU
Neurospine 2024;21(2):555-564
Objective:
To investigate the developmental defects caused by knockdown of best1 gene in zebrafish as a model for a subtype of craniovertebral junction (CVJ) malformation.
Methods:
Two antisense morpholinos (MOs) were designed targeting zebrafish best1 to block translation (ATG-MO) or to disrupt splicing (I3E4-MO). MOs were microinjected into fertilized one-cell embryos. Efficacy of splicing MO was confirmed by reverse transcription-polymerase chain reaction. Phenotypes were analyzed and quantified by microscopy at multiple developmental stages. Neuronal outgrowth was assessed in transgenic zebrafish expressing green fluorescent protein in neurons. Skeletal ossification was visualized by Calcein staining.
Results:
Knockdown of best1 resulted in zebrafish embryos with shorter body length, curved axis, low survival rate, microcephaly, reduced eye size, smaller head and brain, impaired neuronal outgrowth, and reduced ossification of craniofacial and vertebral bone.
Conclusion
Best1 gene plays critical roles in ophthalmologic, neurological and skeletal development in zebrafish. A patient with a premature stop codon in BEST1 gene exhibited similar phenotypes, implying a subtype of CVJ malformation.
7.Knockdown of best1 Gene in Zebrafish Caused Abnormal Neuronal and Skeletal Development - A Subtype of Craniovertebral Junction Malformation?
Zhenlei LIU ; Kang LI ; Kai WANG ; Lei ZHANG ; Shanhang JIA ; He WANG ; Fengzeng JIAN ; Hao WU
Neurospine 2024;21(2):555-564
Objective:
To investigate the developmental defects caused by knockdown of best1 gene in zebrafish as a model for a subtype of craniovertebral junction (CVJ) malformation.
Methods:
Two antisense morpholinos (MOs) were designed targeting zebrafish best1 to block translation (ATG-MO) or to disrupt splicing (I3E4-MO). MOs were microinjected into fertilized one-cell embryos. Efficacy of splicing MO was confirmed by reverse transcription-polymerase chain reaction. Phenotypes were analyzed and quantified by microscopy at multiple developmental stages. Neuronal outgrowth was assessed in transgenic zebrafish expressing green fluorescent protein in neurons. Skeletal ossification was visualized by Calcein staining.
Results:
Knockdown of best1 resulted in zebrafish embryos with shorter body length, curved axis, low survival rate, microcephaly, reduced eye size, smaller head and brain, impaired neuronal outgrowth, and reduced ossification of craniofacial and vertebral bone.
Conclusion
Best1 gene plays critical roles in ophthalmologic, neurological and skeletal development in zebrafish. A patient with a premature stop codon in BEST1 gene exhibited similar phenotypes, implying a subtype of CVJ malformation.
8.Knockdown of best1 Gene in Zebrafish Caused Abnormal Neuronal and Skeletal Development - A Subtype of Craniovertebral Junction Malformation?
Zhenlei LIU ; Kang LI ; Kai WANG ; Lei ZHANG ; Shanhang JIA ; He WANG ; Fengzeng JIAN ; Hao WU
Neurospine 2024;21(2):555-564
Objective:
To investigate the developmental defects caused by knockdown of best1 gene in zebrafish as a model for a subtype of craniovertebral junction (CVJ) malformation.
Methods:
Two antisense morpholinos (MOs) were designed targeting zebrafish best1 to block translation (ATG-MO) or to disrupt splicing (I3E4-MO). MOs were microinjected into fertilized one-cell embryos. Efficacy of splicing MO was confirmed by reverse transcription-polymerase chain reaction. Phenotypes were analyzed and quantified by microscopy at multiple developmental stages. Neuronal outgrowth was assessed in transgenic zebrafish expressing green fluorescent protein in neurons. Skeletal ossification was visualized by Calcein staining.
Results:
Knockdown of best1 resulted in zebrafish embryos with shorter body length, curved axis, low survival rate, microcephaly, reduced eye size, smaller head and brain, impaired neuronal outgrowth, and reduced ossification of craniofacial and vertebral bone.
Conclusion
Best1 gene plays critical roles in ophthalmologic, neurological and skeletal development in zebrafish. A patient with a premature stop codon in BEST1 gene exhibited similar phenotypes, implying a subtype of CVJ malformation.
9.Knockdown of best1 Gene in Zebrafish Caused Abnormal Neuronal and Skeletal Development - A Subtype of Craniovertebral Junction Malformation?
Zhenlei LIU ; Kang LI ; Kai WANG ; Lei ZHANG ; Shanhang JIA ; He WANG ; Fengzeng JIAN ; Hao WU
Neurospine 2024;21(2):555-564
Objective:
To investigate the developmental defects caused by knockdown of best1 gene in zebrafish as a model for a subtype of craniovertebral junction (CVJ) malformation.
Methods:
Two antisense morpholinos (MOs) were designed targeting zebrafish best1 to block translation (ATG-MO) or to disrupt splicing (I3E4-MO). MOs were microinjected into fertilized one-cell embryos. Efficacy of splicing MO was confirmed by reverse transcription-polymerase chain reaction. Phenotypes were analyzed and quantified by microscopy at multiple developmental stages. Neuronal outgrowth was assessed in transgenic zebrafish expressing green fluorescent protein in neurons. Skeletal ossification was visualized by Calcein staining.
Results:
Knockdown of best1 resulted in zebrafish embryos with shorter body length, curved axis, low survival rate, microcephaly, reduced eye size, smaller head and brain, impaired neuronal outgrowth, and reduced ossification of craniofacial and vertebral bone.
Conclusion
Best1 gene plays critical roles in ophthalmologic, neurological and skeletal development in zebrafish. A patient with a premature stop codon in BEST1 gene exhibited similar phenotypes, implying a subtype of CVJ malformation.
10.Knockdown of best1 Gene in Zebrafish Caused Abnormal Neuronal and Skeletal Development - A Subtype of Craniovertebral Junction Malformation?
Zhenlei LIU ; Kang LI ; Kai WANG ; Lei ZHANG ; Shanhang JIA ; He WANG ; Fengzeng JIAN ; Hao WU
Neurospine 2024;21(2):555-564
Objective:
To investigate the developmental defects caused by knockdown of best1 gene in zebrafish as a model for a subtype of craniovertebral junction (CVJ) malformation.
Methods:
Two antisense morpholinos (MOs) were designed targeting zebrafish best1 to block translation (ATG-MO) or to disrupt splicing (I3E4-MO). MOs were microinjected into fertilized one-cell embryos. Efficacy of splicing MO was confirmed by reverse transcription-polymerase chain reaction. Phenotypes were analyzed and quantified by microscopy at multiple developmental stages. Neuronal outgrowth was assessed in transgenic zebrafish expressing green fluorescent protein in neurons. Skeletal ossification was visualized by Calcein staining.
Results:
Knockdown of best1 resulted in zebrafish embryos with shorter body length, curved axis, low survival rate, microcephaly, reduced eye size, smaller head and brain, impaired neuronal outgrowth, and reduced ossification of craniofacial and vertebral bone.
Conclusion
Best1 gene plays critical roles in ophthalmologic, neurological and skeletal development in zebrafish. A patient with a premature stop codon in BEST1 gene exhibited similar phenotypes, implying a subtype of CVJ malformation.

Result Analysis
Print
Save
E-mail