1.Frontier research and future prospects: The application of vaccines,gene editing,and big data in autoimmune encephalitis
Journal of Apoplexy and Nervous Diseases 2025;42(6):498-500
Autoimmune encephalitis(AE)refers broadly to a group of encephalitic disorders mediated by autoimmune mechanisms. AE is characterized by complex pathogeneses and diverse clinical manifestations,and there are still numerous challenges in the diagnosis and treatment of AE. With the development of frontier technologies such as vaccines,gene editing,and big data,new opportunities have emerged for transforming the diagnosis and treatment strategies for AE. Vaccines play a dual role in AE: on the one hand,they can prevent infections; on the other hand,they may trigger autoimmune responses through molecular mimicry. Emerging nanovaccine technologies are expected to achieve safer and more effective immunomodulation. Gene editing techniques,especially the CRISPR-Cas9 system,have shown potential in targeted regulation of the function of immune cells and repair of nervous tissue,which provides new pathways for precise intervention in the treatment of AE. The application of big data technologies,including artificial intelligence,natural language processing,and deep learning,has promoted the early diagnosis of AE and the development of individualized treatment regimens. This article reviews the research advances and clinical prospects of these cutting-edge technologies in AE,in order to provide insights and references for the development of precision medicine,interdisciplinary collaboration,and future treatment strategies for AE.
2.Pathogenesis of precancerous lesions of gastric cancer and treatment mechanism of Weifuchun Capsules via NF-κB/NLRP3 inflammasome signaling pathway.
Yu-Jia DU ; Ya-di REN ; Yan ZHUANG ; En-Ze LI ; Jun-Hao MIAO ; Chun-Yue YU
China Journal of Chinese Materia Medica 2025;50(5):1236-1246
This study aims to investigate the pathogenesis of precancerous lesions of gastric cancer(PLGC) and explore the potential molecular mechanism of Weifuchun Capsules(WFC) in treating PLGC via the nuclear factor-κB(NF-κB)/NOD-like receptor protein 3(NLRP3) inflammasome signaling pathway. Ninety male SPF-grade Wistar rats were randomized into a normal feeding group and a modeling group. The normal feeding group received a regular diet, while the modeling group was subjected to the disease-syndrome combined modeling of PLGC. Specifically, the rats had free access to the water containing 120 μg·mL~(-1) N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) and received a diet containing 0.05% ranitidine in an irregular feeding pattern(alternations between fasting and overfeeding). After 15 weeks, the rats in the normal feeding group were randomized into control, control-NF-κB activator betulinic acid(C-BA), and control-NF-κB inhibitor pyrrolidine dithiocarbamaten(C-PDTC) groups. Meanwhile, the rats in the modeling group continuously underwent the modeling procedure and were randomized into model, WFC, model-NF-κB activator(M-BA), and model-NF-κB inhibitor(M-PDTC) groups. The model group and control group were given aseptic water by intragastric administration, once a day. WFC was given at a dose(432 mg·kg~(-1)) 6 times the equivalent dose for adults(body weight: 60 kg) by gavage, once a day. The rats in the C-BA and M-BA groups were administrated with BA by intraperitoneal injection at a dose of 10 mg·kg~(-1), twice a week. The rats in the C-PDTC and M-PDTC groups were administrated with PDTC by intraperitoneal injection at a dose of 50 mg·kg~(-1), twice a week. The interventions were carried out for 4 weeks. Histopathological changes of the gastric mucosa were observed and scored by hematoxylin-eosin(HE) and alcian blue-periodic acid Sthiff(AB-PAS) staining. The levels of inflammatory cytokines including interleukin(IL)-1β, IL-6, IL-18, tumor necrosis factor-alpha(TNF-α), and IL-10 in the gastric tissue were determined by enzyme-linked immunosorbent assay(ELISA). The expression levels of proteins associated with the NF-κB/NLRP3 inflammasome in the gastric mucosa were determined by Western blot. The positive expression areas of proteins related to NF-κB/NLRP3 inflammasome in the gastric mucosa were measured by immunohistochemistry. The results showed that compared with the control group, the model, C-BA, and M-BA groups showed significantly risen scores of mucosal inflammation, degree of inflammatory activity, gland atrophy, and intestinal metaplasia, and the model and M-BA groups showed significanly risen scores of dysplasia. Compared with the model group, the WFC group demonstrated significantly declined scores of mucosal inflammation and degree of inflammatory activity, as well as declined scores of intestinal metaplasia and dysplasia. Compared with the control group, the model and C-BA groups showed significantly elevated levels of IL-1β, IL-6, IL-18, and TNF-α in the gastric tissue, and the model group showed significantly elevated level of IL-10. In addition, the model and C-BA groups showed significantly up-regulated expression of NF-κB p65, NLRP3, cysteine-aspartic acid protease 1(caspase-1), and apoptosis-associated speck-like protein containing a CARD(ASC) in the gastric mucosa and increased positive expression areas of NF-κB p65, NLRP3, and ASC. Compared with the model group, the WFC group showed significantly decreased levels of IL-1β, IL-6, IL-18, TNF-α, and IL-10 in the gastric tissue, and the M-PDTC group showed significantly lowered levels of IL-1β, IL-18, and TNF-α in the gastric mucosa. Both WFC and M-PDTC groups demonstrated significantly down-regulated expression levels of NF-κB p65, phosphorylated NF-κB p65(p-NF-κB p65), NLRP3, and caspase-1 in the gastric mucosa, along with significant decreases in the positive expression areas of NF-κB p65, NLRP3, and ASC. In conclusion, the pathogenesis of PLGC is closely related to the activation of the NF-κB/NLRP3 inflammasome signaling pathway. WFC can alleviate mucosal inflammation, inhibit glandular atrophy, partially reverse intestinal metaplasia, and reduce dysplasia to delay the process of inflammation-cancer transformation, and meanwhile it can effectively lower the levels of inflammatory cytokines and down-regulate the expression of pathway-related proteins in the stomach. Therefore, WFC may treat PLGC by inhibiting the NF-κB/NLRP3 inflammasome signaling pathway.
Animals
;
Male
;
NF-kappa B/genetics*
;
Rats
;
Rats, Wistar
;
Drugs, Chinese Herbal/administration & dosage*
;
Signal Transduction/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Stomach Neoplasms/pathology*
;
Inflammasomes/genetics*
;
Humans
;
Precancerous Conditions/metabolism*
;
Capsules
3.Dehydrodiisoeugenol resists H1N1 virus infection via TFEB/autophagy-lysosome pathway.
Zhe LIU ; Jun-Liang LI ; Yi-Xiang ZHOU ; Xia LIU ; Yan-Li YU ; Zheng LUO ; Yao WANG ; Xin JIA
China Journal of Chinese Materia Medica 2025;50(6):1650-1658
The present study delves into the cellular mechanisms underlying the antiviral effects of dehydrodiisoeugenol(DEH) by focusing on the transcription factor EB(TFEB)/autophagy-lysosome pathway. The cell counting kit-8(CCK-8) was utilized to assess the impact of DEH on the viability of human non-small cell lung cancer cells(A549). The inhibitory effect of DEH on the replication of influenza A virus(H1N1) was determined by real-time quantitative polymerase chain reaction(RT-qPCR). Western blot was employed to evaluate the influence of DEH on the expression level of the H1N1 virus nucleoprotein(NP). The effect of DEH on the fluorescence intensity of NP was examined by the immunofluorescence assay. A mouse model of H1N1 virus infection was established via nasal inhalation to evaluate the therapeutic efficacy of 30 mg·kg~(-1) DEH on H1N1 virus infection. RNA sequencing(RNA-seq) was performed for the transcriptional profiling of mouse embryonic fibroblasts(MEFs) in response to DEH. The fluorescent protein-tagged microtubule-associated protein 1 light chain 3(LC3) was used to assess the autophagy induced by DEH. Western blot was employed to determine the effect of DEH on the autophagy flux of LC3Ⅱ/LC3Ⅰ under viral infection conditions. Lastly, the role of TFEB expression in the inhibition of DEH against H1N1 infection was evaluated in immortalized bone marrow-derived macrophage(iBMDM), both wild-type and TFEB knockout. The results revealed that the half-maximal inhibitory concentration(IC_(50)) of DEH for A549 cells was(87.17±0.247)μmol·L~(-1), and DEH inhibited H1N1 virus replication in a dose-dependent manner in vitro. Compared with the H1N1 virus-infected mouse model, the treatment with DEH significantly improved the body weights and survival time of mice. DEH induced LC3 aggregation, and the absence of TFEB expression in iBMDM markedly limited the ability of DEH to counteract H1N1 virus replication. In conclusion, DEH exerts its inhibitory activity against H1N1 infection by activating the TFEB/autophagy-lysosome pathway.
Influenza A Virus, H1N1 Subtype/genetics*
;
Animals
;
Autophagy/drug effects*
;
Humans
;
Mice
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Influenza, Human/metabolism*
;
Lysosomes/metabolism*
;
Orthomyxoviridae Infections/genetics*
;
Eugenol/pharmacology*
;
Antiviral Agents/pharmacology*
;
Virus Replication/drug effects*
;
A549 Cells
;
Male
4.Integrated multiomics reveal mechanism of Aidi Injection in attenuating doxorubicin-induced cardiotoxicity.
Yan-Li WANG ; Yu-Jie TU ; Jian-Hua ZHU ; Lin ZHENG ; Yong HUANG ; Jia SUN ; Yong-Jun LI ; Jie PAN ; Chun-Hua LIU ; Yuan LU
China Journal of Chinese Materia Medica 2025;50(8):2245-2259
The combination of Aidi Injection(ADI) and doxorubicin(DOX) is a common strategy in the treatment of cancer, which can achieve synergistic anti-tumor effects while attenuating the cardiotoxicity caused by DOX. This study aims to investigate the mechanism of ADI in attenuating DOX-induced cardiotoxicity by multi-omics. DOX was used to induce cardiotoxicity in mice, and the cardioprotective effects of ADI were evaluated based on biochemical indicators and pathological changes. Based on the results, transcriptomics, proteomics, and metabolomics were employed to analyze the changes of endogenous substances in different physiological states. Furthermore, data from multiple omics were integrated to screen key regulatory pathways by which ADI attenuated DOX-induced cardiotoxicity, and important target proteins were selected for measurement by ELISA kits and immunohistochemical analysis. The results showed that ADI significantly reduced the levels of cardiac troponin T(cTnT) and N-terminal pro-B-type natriuretic peptide(NT-proBNP) and effectively ameliorated myocardial fibrosis and intracellular vacuolization, indicating that ADI showed therapeutic effect on DOX-induced cardiotoxicity. The transcriptomics analysis screened out a total of 400 differentially expressed genes(DEGs), which were mainly enriched in inflammatory response, oxidative stress, and myocardial fibrosis. After proteomics analysis, 70 differentially expressed proteins were selected, which were mainly enriched in the inflammatory response, cardiac function, and energy metabolism. A total of 51 differentially expressed metabolites were screened by the metabolomics analysis, and they were mainly enriched in multiple signaling pathways, including the inflammatory response, lipid metabolism, and energy metabolism. The integrated data of multiple omics showed that linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism pathways played an important role in DOX-induced cardiotoxicity, and ADI may exert therapeutic effects by modulating these pathways. Target validation experiments suggested that ADI significantly regulated abnormal protein levels of cyclooxygenase-1(COX-1), cyclooxygenase-2(COX-2), prostaglandin H2(PGH2), and prostaglandin D2(PGD2) in the model group. In conclusion, ADI may attenuate DOX-induced cardiotoxicity by regulating linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism, thus alleviating inflammation of the body.
Doxorubicin/toxicity*
;
Animals
;
Mice
;
Cardiotoxicity/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Proteomics
;
Metabolomics
;
Injections
;
Humans
;
Multiomics
5.Identification and expression analysis of seed dehydration tolerance and PLD gene family in Panax medicinal plants.
Chao-Lin LI ; Min HUANG ; Na GE ; Qing-Yan WANG ; Jin-Shan JIA ; Ting LUO ; Jin-Yan ZHANG ; Ping ZHOU ; Jun-Wen CHEN
China Journal of Chinese Materia Medica 2025;50(12):3307-3321
Panax species are mostly valuable medicinal plants. While some species' seeds are sensitive to dehydration, the dehydration tolerance of seeds from other Panax species remains unclear. The phospholipase D(PLD) gene plays an important role in plant responses to dehydration stress. However, the characteristics of the PLD gene family and their mechanisms of response to dehydration stress in seeds of Panax species with different dehydration tolerances are not well understood. This study used seeds from eight Panax species to measure the germination rates and PLD activity after dehydration and to analyze the correlation between dehydration tolerance and seed traits. Bioinformatics analysis was also conducted to characterize the PnPLD and PvPLD gene families and to evaluate their expression patterns under dehydration stress. The dehydration tolerance of Panax seeds was ranked from high to low as follows: P. ginseng, P. zingiberensis, P. quinquefolius, P. vietnamensis var. fuscidiscus, P. japonicus var. angustifolius, P. japonicus, P. notoginseng, and P. stipuleanatus. A significant negative correlation was found between dehydration tolerance and seed shape(three-dimensional variance), with flatter seeds exhibiting stronger dehydration tolerance(r=-0.792). Eighteen and nineteen PLD members were identified in P. notoginseng and P. vietnamensis var. fuscidiscus, respectively. These members were classified into five isoforms: α, β, γ, δ, and ζ. The gene structures, subcellular localization, physicochemical properties, and other characteristics of PnPLD and PvPLD were similar. Both promoters contained regulatory elements associated with plant growth and development, hormone responses, and both abiotic and biotic stress. During dehydration, the PLD enzyme activity in P. notoginseng seeds gradually increased as the water content decreased, whereas in P. vietnamensis var. fuscidiscus, PLD activity first decreased and then increased. The expression of PLDα and PLDδ in P. notoginseng seeds initially increased and then decreased, whereas in P. vietnamensis var. fuscidiscus, the expression of PLDα and PLDδ consistently decreased. In conclusion, the dehydration tolerance of Panax seeds showed a significant negative correlation with seed shape. The dehydration tolerance in P. vietnamensis var. fuscidiscus and dehydration sensitivity of P. notoginseng seeds may be related to differences in PLD enzyme activity and the expression of PLDα and PLDδ genes. This study provided the first systematic comparison of dehydration tolerance in Panax seeds and analyzed the causes of tolerance differences and the optimal water content for long-term storage at ultra-low temperatures, thus providing a theoretical basis for the short-term and ultra-low temperature long-term storage of medicinal plant seeds with varying dehydration tolerances.
Seeds/metabolism*
;
Panax/physiology*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Phospholipase D/metabolism*
;
Plants, Medicinal/enzymology*
;
Germination
;
Multigene Family
;
Water/metabolism*
;
Dehydration
;
Phylogeny
6.A new perspective on quality control of traditional Chinese medicine based on characteristics of "physical phase structure".
Zhong-Huan QU ; Yan-Jun YANG ; Bing YANG ; Ru-Yu SHI ; Mao-Mao ZHU ; Lu SUN ; Xiao-Bin JIA ; Liang FENG
China Journal of Chinese Materia Medica 2025;50(13):3579-3588
Quality control is a key link in the modernization process of traditional Chinese medicine(TCM). Studies have shown that the effects of active components in TCM depend on not only their chemical composition but also their suitable physical forms and states. The physical phase structures, such as micelles, vesicles, gels, and nanoparticles, can improve the solubility, delivery efficiency, and targeting precision of active components. These structures significantly enhance the pharmacological activity while reducing the toxicity and side effects, demonstrating functional activity surpassing that of active components and highlighting the key effects of "structures" on "functions" of active components. Taking the physical phase structure as a breakthrough point, this paper outlines the common types of TCM physical phase structures. Furthermore, this paper explores how to realize the quality upgrading of TCM through the precise regulation of physical phase structures based on the current applications and potential of TCM physical phase structures in processing to increase the efficacy and reduce the toxicity, compounding and decocting processes, drug delivery systems, and quality control, aiming to provide novel insights for the future quality control of TCM.
Quality Control
;
Drugs, Chinese Herbal/standards*
;
Medicine, Chinese Traditional/standards*
;
Humans
;
Drug Delivery Systems
7.Progress in investigating astrocyte heterogeneity after spinal cord injury based on single-cell sequencing technology.
Lei DU ; Yan-Jun ZHANG ; Tie-Feng GUO ; Lin-Zhao LUO ; Ping-Yi MA ; Jia-Ming LI ; Sheng TAN
China Journal of Orthopaedics and Traumatology 2025;38(5):544-548
In recent years, the study of single-cell transcriptome sequencing technology in the heterogeneity of astrocytes (astrocytes) after spinal cord injury (SCI) has provided new perspectives on post-traumatic nerve regeneration and repair. To provide a review on the research progress of single-cell sequencing technology in astrocytes after spinal cord injury (SCI), and to more comprehensively and deeply elaborate the application of single-cell sequencing technology in the field of astrocytes after SCI. Single-cell sequencing technology can analyse the transcriptomes of individual cells in a high-throughput manner, thus revealing fine differences in cell types and states. By using single-cell sequencing technology, the heterogeneity of astrocytes after SCI and their association with nerve regeneration and repair were revealed. In conclusion, the application of single-cell sequencing technology provides an important tool to reveal the heterogeneity of astrocytes after SCI, to further explore the mechanisms of astrocytes in SCI, and to develop intervention strategies targeting their regulatory mechanisms in order to improve the therapeutic efficacy of SCI. The discovery of changes in astrocyte transcriptome dynamics has improved researchers' understanding of spinal cord injury lesion progression and provided new insights into the treatment of spinal cord injury at different time points. To date, all of these findings need to be validated by more basic research and sufficient clinical trials. In the future, single-cell sequencing technology, through interdisciplinary collaboration with bioinformatics, computer science, tissue engineering, and clinical medicine, is expected to open a new window for the treatment of spinal cord injury.
Spinal Cord Injuries/metabolism*
;
Astrocytes/cytology*
;
Single-Cell Analysis/methods*
;
Humans
;
Animals
;
Transcriptome
;
Nerve Regeneration
8.Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.
Xiang-Yu SONG ; Yang-Hui DONG ; Zhi-Bo JIA ; Lei-Jia CHEN ; Meng-Yi CUI ; Yan-Jun GUAN ; Bo-Yao YANG ; Si-Ce WANG ; Sheng-Feng CHEN ; Peng-Kai LI ; Heng CHEN ; Hao-Chen ZUO ; Zhan-Cheng YANG ; Wen-Jing XU ; Ya-Qun ZHAO ; Jiang PENG
Chinese Journal of Traumatology 2025;28(6):469-476
PURPOSE:
To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
METHODS:
This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method. A yorkshire model of brain tissue injury induced by traumatic blood loss was established. Firstly, the perfusion temperature and blood oxygen saturation were monitored in real-time during the perfusion process. The number of red blood cells, hemoglobin content, NA+, K+, and Ca2+ ions concentrations and pH of the perfusate were detected. Following perfusion, we specifically examined the parietal lobe to assess its water content. The prefrontal cortex and hippocampus were then dissected for histological evaluation, allowing us to investigate potential regional differences in tissue injury. The blank control group was sampled directly before perfusion. All statistical analyses and graphs were performed using GraphPad Prism 8.0 Student t-test. All tests were two-sided, and p value of less than 0.05 was considered to indicate statistical significance.
RESULTS:
The contents of red blood cells and hemoglobin during perfusion were maintained at normal levels but more red blood cells were destroyed 3 h after the perfusion. The blood oxygen saturation of the perfusion group was maintained at 95% - 98%. NA+ and K+ concentrations were normal most of the time during perfusion but increased significantly at about 4 h. The Ca2+ concentration remained within the normal range at each period. Glucose levels were slightly higher than the baseline level. The pH of the perfusion solution was slightly lower at the beginning of perfusion, and then gradually increased to the normal level. The water content of brain tissue in the sub-low and docile perfusion group was 78.95% ± 0.39%, which was significantly higher than that in the control group (75.27% ± 0.55%, t = 10.49, p < 0.001), and the difference was statistically significant. Compared with the blank control group, the structure and morphology of pyramidal neurons in the prefrontal cortex and CA1 region of the hippocampal gyrus were similar, and their integrity was better. The structural integrity of granulosa neurons was destroyed and cell edema increased in the perfusion group compared with the blank control group. Immunofluorescence staining for glail fibrillary acidic protein and Iba1, markers of glial cells, revealed well-preserved cell structures in the perfusion group. While there were indications of abnormal cellular activity, the analysis showed no significant difference in axon thickness or integrity compared to the 1-h blank control group.
CONCLUSIONS
Mild hypothermic machine perfusion can improve ischemia and hypoxia injury of yorkshire brain tissue caused by traumatic blood loss and delay the necrosis and apoptosis of yorkshire brain tissue by continuous oxygen supply, maintaining ion homeostasis and reducing tissue metabolism level.
Animals
;
Perfusion/methods*
;
Disease Models, Animal
;
Brain Injuries/etiology*
;
Swine
;
Male
;
Hypothermia, Induced/methods*
9.Explanation and interpretation of blood transfusion provisions for children with hematological diseases in the national health standard "Guideline for pediatric transfusion".
Ming-Yi ZHAO ; Rong HUANG ; Rong GUI ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(1):18-25
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion is one of the most commonly used supportive treatments for children with hematological diseases. This guideline provides guidance and recommendations for blood transfusions in children with aplastic anemia, thalassemia, autoimmune hemolytic anemia, glucose-6-phosphate dehydrogenase deficiency, acute leukemia, myelodysplastic syndromes, immune thrombocytopenic purpura, and thrombotic thrombocytopenic purpura. This article presents the evidence and interpretation of the blood transfusion provisions for children with hematological diseases in the "Guideline for pediatric transfusion", aiming to assist in the understanding and implementing the blood transfusion section of this guideline.
Humans
;
Child
;
Hematologic Diseases/therapy*
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
10.Explanation and interpretation of the compilation of blood transfusion provisions for children undergoing hematopoietic stem cell transplantation in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(2):139-143
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion for children undergoing hematopoietic stem cell transplantation is highly complex and challenging. This guideline provides recommendations on transfusion thresholds and the selection of blood components for these children. This article presents the evidence and interpretation of the transfusion provisions for children undergoing hematopoietic stem cell transplantation, with the aim of enhancing the understanding and implementation of the "Guideline for pediatric transfusion".
Humans
;
Hematopoietic Stem Cell Transplantation
;
Child
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic

Result Analysis
Print
Save
E-mail