1.Fucoidan sulfate regulates Hmox1-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy.
Yu-Feng CAI ; Wei HU ; Yi-Gang WAN ; Yue TU ; Si-Yi LIU ; Wen-Jie LIU ; Liu-Yun-Xin PAN ; Ke-Jia WU
China Journal of Chinese Materia Medica 2025;50(9):2461-2471
This study explores the role and underlying molecular mechanisms of fucoidan sulfate(FPS) in regulating heme oxygenase-1(Hmox1)-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy(DCM) through in vivo and in vitro experiments and network pharmacology analysis. In vivo, a DCM rat model was established using a combination of "high-fat diet feeding + two low-dose streptozotocin(STZ) intraperitoneal injections". The rats were randomly divided into four groups: normal, model, FPS, and dapagliflozin(Dapa) groups. In vitro, a cellular model was created by inducing rat cardiomyocytes(H9c2 cells) with high glucose(HG), using zinc protoporphyrin(ZnPP), an Hmox1 inhibitor, as the positive control. An automatic biochemical analyzer was used to measure blood glucose(BG), serum aspartate aminotransferase(AST), serum lactate dehydrogenase(LDH), and serum creatine kinase-MB(CK-MB) levels. Echocardiography was used to assess rat cardiac function, including ejection fraction(EF) and fractional shortening(FS). Pathological staining was performed to observe myocardial morphology and fibrotic characteristics. DCFH-DA fluorescence probe was used to detect reactive oxygen species(ROS) levels in myocardial tissue. Specific assay kits were used to measure serum brain natriuretic peptide(BNP), myocardial Fe~(2+), and malondialdehyde(MDA) levels. Western blot(WB) was used to detect the expression levels of myosin heavy chain 7B(MYH7B), natriuretic peptide A(NPPA), collagens type Ⅰ(Col-Ⅰ), α-smooth muscle actin(α-SMA), ferritin heavy chain 1(FTH1), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), 4-hydroxy-2-nonenal(4-HNE), and Hmox1. Immunohistochemistry(IHC) was used to examine Hmox1 protein expression patterns. FerroOrange and Highly Sensitive DCFH-DA fluorescence probes were used to detect intracellular Fe~(2+) and ROS levels. Transmission electron microscopy was used to observe changes in mitochondrial morphology. In network pharmacology, FPS targets were identified through the PubChem database and PharmMapper platform. DCM-related targets were integrated from OMIM, GeneCards, and DisGeNET databases, while ferroptosis-related targets were obtained from the FerrDb database. A protein-protein interaction(PPI) network was constructed for the intersection of these targets using STRING 11.0, and core targets were screened with Cytoscape 3.9.0. Molecular docking analysis was conducted using AutoDock and PyMOL 2.5. In vivo results showed that FPS significantly reduced AST, LDH, CK-MB, and BNP levels in DCM model rats, improved cardiac function, decreased the expression of myocardial injury proteins(MYH7B, NPPA, Col-Ⅰ, and α-SMA), alleviated myocardial hypertrophy and fibrosis, and reduced Fe~(2+), ROS, and MDA levels in myocardial tissue. Furthermore, FPS regulated the expression of ferroptosis-related markers(Hmox1, FTH1, SLC7A11, GPX4, and 4-HNE) to varying degrees. Network pharmacology results revealed 313 potential targets for FPS, 1 125 targets for DCM, and 14 common targets among FPS, DCM, and FerrDb. Hmox1 was identified as a key target, with FPS showing high docking activity with Hmox1. In vitro results demonstrated that FPS restored the expression levels of ferroptosis-related proteins, reduced intracellular Fe~(2+) and ROS levels, and alleviated mitochondrial structural damage in cardiomyocytes. In conclusion, FPS improves myocardial injury in DCM, with its underlying mechanism potentially involving the regulation of Hmox1 to inhibit ferroptosis. This study provides pharmacological evidence supporting the therapeutic potential of FPS for DCM-induced myocardial injury.
Animals
;
Ferroptosis/drug effects*
;
Rats
;
Diabetic Cardiomyopathies/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Polysaccharides/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Myocytes, Cardiac/metabolism*
;
Myocardium/pathology*
;
Humans
;
Cell Line
;
Heme Oxygenase (Decyclizing)
2.Integrated multiomics reveal mechanism of Aidi Injection in attenuating doxorubicin-induced cardiotoxicity.
Yan-Li WANG ; Yu-Jie TU ; Jian-Hua ZHU ; Lin ZHENG ; Yong HUANG ; Jia SUN ; Yong-Jun LI ; Jie PAN ; Chun-Hua LIU ; Yuan LU
China Journal of Chinese Materia Medica 2025;50(8):2245-2259
The combination of Aidi Injection(ADI) and doxorubicin(DOX) is a common strategy in the treatment of cancer, which can achieve synergistic anti-tumor effects while attenuating the cardiotoxicity caused by DOX. This study aims to investigate the mechanism of ADI in attenuating DOX-induced cardiotoxicity by multi-omics. DOX was used to induce cardiotoxicity in mice, and the cardioprotective effects of ADI were evaluated based on biochemical indicators and pathological changes. Based on the results, transcriptomics, proteomics, and metabolomics were employed to analyze the changes of endogenous substances in different physiological states. Furthermore, data from multiple omics were integrated to screen key regulatory pathways by which ADI attenuated DOX-induced cardiotoxicity, and important target proteins were selected for measurement by ELISA kits and immunohistochemical analysis. The results showed that ADI significantly reduced the levels of cardiac troponin T(cTnT) and N-terminal pro-B-type natriuretic peptide(NT-proBNP) and effectively ameliorated myocardial fibrosis and intracellular vacuolization, indicating that ADI showed therapeutic effect on DOX-induced cardiotoxicity. The transcriptomics analysis screened out a total of 400 differentially expressed genes(DEGs), which were mainly enriched in inflammatory response, oxidative stress, and myocardial fibrosis. After proteomics analysis, 70 differentially expressed proteins were selected, which were mainly enriched in the inflammatory response, cardiac function, and energy metabolism. A total of 51 differentially expressed metabolites were screened by the metabolomics analysis, and they were mainly enriched in multiple signaling pathways, including the inflammatory response, lipid metabolism, and energy metabolism. The integrated data of multiple omics showed that linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism pathways played an important role in DOX-induced cardiotoxicity, and ADI may exert therapeutic effects by modulating these pathways. Target validation experiments suggested that ADI significantly regulated abnormal protein levels of cyclooxygenase-1(COX-1), cyclooxygenase-2(COX-2), prostaglandin H2(PGH2), and prostaglandin D2(PGD2) in the model group. In conclusion, ADI may attenuate DOX-induced cardiotoxicity by regulating linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism, thus alleviating inflammation of the body.
Doxorubicin/toxicity*
;
Animals
;
Mice
;
Cardiotoxicity/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Proteomics
;
Metabolomics
;
Injections
;
Humans
;
Multiomics
3.Mechanism of Ginkgo flavone aglycone in alleviating doxorubicin-induced cardiotoxicity based on transcriptomics and proteomics
Yujie TU ; Ying CAI ; Xueyi CHENG ; Jia SUN ; Jie PAN ; Chunhua LIU ; Yongjun LI ; Yong HUANG ; Lin ZHENG ; Yuan LU
China Pharmacy 2024;35(21):2596-2602
OBJECTIVE To investigate the mechanism by which Ginkgo flavone aglycone (GA) reduces the cardiotoxicity of doxorubicin (DOX) based on transcriptomics and proteomics. METHODS Thirty-six mice were randomly assigned to control group (CON group, tail vein injection of equal volume of physiological saline every other day+daily intragastric administration of an equal volume of physiological saline), DOX group (tail vein injection of 3 mg/kg DOX every other day), and GDOX group (daily intragastric administration of 100 mg/kg GA+tail vein injection of 3 mg/kg DOX every other day), with 12 mice in each group. The administration of drugs/physiological saline was continued for 15 days. Mouse heart tissues were collected for RNA-Seq transcriptomic sequencing and 4D-Label-free quantitative proteomic analysis to screen differentially expressed genes and proteins, which were then subjected to Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis. The expression levels of Apelin peptide (Apelin), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) mRNA and protein in mouse heart tissues, as well as the phosphorylation levels of PI3K and Akt proteins, were verified. H9c2 cardiomyocytes were divided into control group (CON group), DOX group (2 μmol/L), and GDOX group (2 μg/mL GA+2 μmol/L DOX) to determine cell viability and the levels of key glycolytic substances in the cells. RESULTS Six common pathways were identified from transcriptomics and proteomics, including the Apelin signaling pathway, the PI3K-Akt signaling pathway, and insulin resistance. Among them, the Apelin and PI3K-Akt signaling pathways were the most enriched in terms of gene numbers. Target validation experiments showed that compared to the CON group, the relative expression of Apelin, PI3K and Akt mRNA and protein levels, as well as the phosphorylation levels of PI3K and Akt proteins, were significantly decreased in the DOX group (P<0.05 or P<0.01). The relative expression of Apelin, PI3K and Akt mRNA and the phosphorylation levels of PI3K and Akt proteins were significantly increased in the GDOX group as compared with the DOX group (P<0.05 or P<0.01). Cellular experiments indicated that compared to the CON group, cell viability in the DOX group was significantly decreased (P<0.05), the relative uptake of glucose and the relative production of pyruvate and lactate were significantly increased (P<0.05), and the relative production of ATP was significantly reduced (P<0.05). Compared to the DOX group, cell viability in the GDOX group was significantly increased (P< 0.05), and the relative production of pyruvate and lactate was significantly reduced (P<0.05). CONCLUSIONS GA may alleviate DOX-induced cardiotoxicity by upregulating the mRNA and protein expression of Apelin, PI3K, and Akt in heart tissues, and regulating glycolytic processes.
4.Construction,identification and efficiency detection of CX3CR1GFP reporter gene mice
Xin-Xin ZHAO ; Rong HUANG ; Lu-Yun CHEN ; Chun-Mei HUANG ; Jia-Jie TU ; Xin-Ming WANG
Chinese Pharmacological Bulletin 2024;40(12):2392-2398
Aim To construct CX3CR1GFP transgenic mice based on the Cre/Loxp system,and to analyze the expression efficiency of CX3CR1GFP.Methods Targeted vectors were designed using restriction enzyme-based cloning technology to create a linearized targeted vector for transfecting embryonic stem cells(ES).The ES cells with a deletion of the neomycin resistance gene(neo)were then cloned into blastocysts to generate chimeric CX3CR1+/GFPmice.These mice were subsequently bred with wild-type mice(WT),and repeated backcrossing was performed to obtain CX3CR1GFP/GFP mice.DNA and mRNA from WT and CX3CR1GFP mice were extracted and genotyped using agarose gel electrophoresis.The expression level of CX3CR1 in various tis-sues of the mice was detected by RT-qPCR.Western blot analy-sis was used to analyze the expression of GFP protein in periph-eral blood mononuclear cells(PBMC)and various tissues.The labeling efficiency of immune cells in bone marrow was detected by flow cytometry.The expression of GFP in different mouse tis-sues was observed by immunofluorescence.Results The results of agarose gel electrophoresis showed that the transgenic mouse genotype was CX3CR1GFP/GFP homozygote.RT-qPCR and West-ern blot showed that EGFP were targeted to replace CX3CR1 gene,so CX3CR1 expression was very low in CX3CR1GFP mice,while GFP expression was significantly upregulated.Flow cytom-etry and immunofluorescence showed that GFP effectively marked CX3CR1GFP mice,expressed in various tissues and cells with different expression levels.Conclusion This study con-structs and identifies the CX3CR1GFP genetic reporter mice,and GFP is stably expressed in mice,which provides a foundation for further research into the potential mechanisms of CX3CR1 in im-mune regulation.
5.Current situation and influencing factors of medical protective mask wea-ring behavior of health care workers
Jia-Jia TU ; Fang LIU ; Ke-Xuan WANG ; Yi-Ping MAO ; Qi QI ; Jie ZHANG
Chinese Journal of Infection Control 2024;23(6):735-741
Objective To understand the current situation of protective mask wearing behavior of health care workers(HCWs),analyze the influencing factors for the failure to wear medical protective masks in a standard manner,and provide basis for the improvement of mask-wearing related training.Methods From June 2022 to March 2023,staff in a tertiary first-class hospital were selected as the research object.Real-time quantitative fitness testing using aerosol condensation particle counting method was applied to test 5 commonly used medical protective masks available in the market.Fitness factor changes of the testing instrument and assistance from professional per-sonnel were needed to comprehensively estimate the wearing condition of medical protective masks.Participants were surveyed through a self-made general information questionnaire.Heads and faces of participants were scanned by three-dimensional(3D)laser scanning technology,and scanned images were imported into Geomagic Studio 2013 software to measure head and face dimensions.Results A total of 222 HCWs were investigated,991 real-time tests and 208 times of 3D scanning were conducted.221(22.30%)tests showed failure of participants in wearing masks in a standard manner.The non-standard wearing rates of 5 types of medical protective masks were 30.56%,25.62%,25.87%,23.15%,and 7.35%,respectively.The non-standard mask-wearing rates showed statistically significant difference between groups categorized in terms of medical protective masks with different shapes,partici-pants'occupation,time of last training for wearing medical protective masks,and participants'experience in pre-vention and control of respiratory infectious disease(all P<0.05).There were no statistically significant differences in non-standard mask-wearing rate between groups with different brands and sizes of medical protective masks,as well as gender and department of participants,etc.(all P>0.05).The body mass index(BMI)was significantly different among participants who wear foldable medical protective masks in the standard and non-standard manner(both P<0.05).Conclusion Wearing medical protective masks by HCWs in a non-standard manner is influenced by multiple factors.It is recommended to conduct real-time testing before formal quantitative fitness testing,so as to save time and improve testing efficiency.When conducting training on wearing medical protective masks in the fu-ture,targeted training should be provided based on mask shape and focus on logistics personnel,interns,individuals with high BMI,those who have never received training on wearing medical protective masks,and those who have never participated in the prevention and treatment of respiratory infectious diseases.
6.Improving Blood Monocyte Energy Metabolism Enhances Its Ability to Phagocytose Amyloid-β and Prevents Alzheimer's Disease-Type Pathology and Cognitive Deficits.
Zhi-Hao LIU ; Yu-Di BAI ; Zhong-Yuan YU ; Hui-Yun LI ; Jie LIU ; Cheng-Rong TAN ; Gui-Hua ZENG ; Yun-Feng TU ; Pu-Yang SUN ; Yu-Juan JIA ; Jin-Cai HE ; Yan-Jiang WANG ; Xian-Le BU
Neuroscience Bulletin 2023;39(12):1775-1788
Deficiencies in the clearance of peripheral amyloid β (Aβ) play a crucial role in the progression of Alzheimer's disease (AD). Previous studies have shown that the ability of blood monocytes to phagocytose Aβ is decreased in AD. However, the exact mechanism of Aβ clearance dysfunction in AD monocytes remains unclear. In the present study, we found that blood monocytes in AD mice exhibited decreases in energy metabolism, which was accompanied by cellular senescence, a senescence-associated secretory phenotype, and dysfunctional phagocytosis of Aβ. Improving energy metabolism rejuvenated monocytes and enhanced their ability to phagocytose Aβ in vivo and in vitro. Moreover, enhancing blood monocyte Aβ phagocytosis by improving energy metabolism alleviated brain Aβ deposition and neuroinflammation and eventually improved cognitive function in AD mice. This study reveals a new mechanism of impaired Aβ phagocytosis in monocytes and provides evidence that restoring their energy metabolism may be a novel therapeutic strategy for AD.
Animals
;
Mice
;
Alzheimer Disease
;
Amyloid beta-Peptides
;
Monocytes
;
Cognition
;
Energy Metabolism
;
Phagocytosis
7.Effect and mechanism of Dahuang Zhechong Pills against testicular aging in rats by inhibiting necroptosis signaling pathway.
Huan LI ; Yue TU ; Yi-Gang WAN ; Geng-Lin MU ; Wei WU ; Jia-Xin CHEN ; Mei-Zi WANG ; Jie WANG ; Yan FU ; Yu-Feng CAI ; Yu WANG ; Zi-Yue WAN
China Journal of Chinese Materia Medica 2022;47(15):4119-4127
To explore the effect and mechanism of Dahuang Zhechong Pills(DHZCP), a classical prescription, in improving testicular aging(TA) in vivo, the authors randomly divided 24 male rats into four groups: the normal, model, DHZCP and vitamin E(VE) groups. The TA rat model was established by continuous gavage of D-galactose(D-gal). During the experiment, the rats in the DHZCP and VE groups were given DHZCP suspension and VE suspension, respectively by gavage, while those in the normal and model groups were gavaged saline separately every day. After the co-administration of D-gal and various drugs for 60 days, all rats were sacrificed, and their blood and testis were collected. Further, various indexes related to TA and necroptosis of testicular cells in the model rats were examined and investigated, which included the aging phenotype, total testicular weight, testicular index, histopathological features of testis, number of spermatogenic cells, sex hormone level, expression characteristics of reactive oxygen species(ROS) in testis, expression levels and characteristics of cyclins in testis, and protein expression levels of the key molecules in receptor-interacting serine/threonine-protein kinase 1(RIPK1)/receptor-interacting serine/threonine-protein kinase 3(RIPK3)/mixed lineage kinase domain like pseudokinase(MLKL) signaling pathway in each group. The results showed that, for the TA model rats, both DHZCP and VE improved their aging phenotype, total testicular weight, testicular index, pathological features of testis, number of spermatogenic cells, serum testosterone and follicle stimulating hormone levels, expression characteristics of ROS and protein expression levels and characteristics of P21 and P53 in testis. In addition, DHZCP and VE improved the protein expression levels of the key molecules in RIPK1/RIPK3/MLKL signaling pathway in testis of the model rats. Specifically, DHZCP was better than VE in the improvement of RIPK3. In conclusion, in this study, the authors found that DHZCP, similar to VE, ameliorated D-gal-induced TA in model rats in vivo, and its mechanism was related to reducing necroptosis of testicular cells by inhibiting the activation of RIPK1/RIPK3/MLKL signaling pathway. This study provided preliminary pharmacological evidence for the development and application of classical prescriptions in the field of men's health.
Aging
;
Animals
;
Drugs, Chinese Herbal
;
Male
;
Necroptosis
;
Protein Kinases/genetics*
;
Rats
;
Reactive Oxygen Species/metabolism*
;
Receptor-Interacting Protein Serine-Threonine Kinases/pharmacology*
;
Serine/pharmacology*
;
Signal Transduction
;
Testis
;
Threonine/pharmacology*
8. Correlation between angiotensin H level and clinical inflammatory indicators in patients with rheumatoid arthritis and therapeutic effect of angiotensin receptor blockers
Xin-Ming WANG ; Chun -Ian YANG ; Xin-Ming WANG ; Jia-Jie TU ; Yi-Xiang DONG ; Xiao JIANG ; Le-Cheng ZHANG ; Hong-Kang MEN ; Li YIN
Chinese Pharmacological Bulletin 2022;38(3):394-403
Aim To investigate the eorrelation between angiotensin II (Ang II ) level and clinical indicators in patients with rheumatoid arthritis ( HA) , and to determine the therapeutic effect of angiotensin receptor blockers ( ARBs).Methods Plasma samples and personal information were collected from HA patients admitted to our hospital from 2019 to 2021.The level of Ang II in plasma was determined by ELISA to elucidate the correlation between plasma Ang II level and the severity of HA.The pathological changes of synovi-al tissues and T eells subtype in different groups of HA patients were determined by pathological examination and flow cytometry.A rat model of collagen-induced arthritis (CIA) was established and the pathological examination was used to confirm that valsartan could alleviate the disease course in the CIA animal model.Results Compared with control group, the plasma level of Ang II in HA patients significantly increased.After therapy with oral ARBs plasma Ang H levels and anti - cyclic citrullinated peptide antibody ( CCP) titre were significantly lower than those untreated HA patients.The level of Ang II in plasma was positively correlated with CCP and the number of monocytes, but negatively with number of RBC and hemoglobin content.Staining of synovial tissue with HE and Masson found that patients with HA had significant synovial proliferation, pannus formation , and numerous inflammatory cell infiltrates compared with control patients.Immunohistochemical results showed significant infiltration of CD4 4 T cells in synovial tissues of HA patients.Western blot and immunofluorescence analysis showed that the expression of angiotensin type 1 receptor ( ATI R ) was significantly up-regulated in CD4 + T cells and synovial tissues of HA patients.The results of animal experiments showed that valsartan harl therapeutic effect on CIA rats and could delay the disease process of CIA.Conclusions Plasma Ang II level is positively correlated with CCP level and HA severity.ARBs can down-regualte CCP level and delay disease progression in HA patients.Animal experiments showed that valsartan blocks the combination of Ang H and ATI R and has therapeutic effect on a CIA rat model.This study provides the theoretical and experimental basis for ARBs to become the preferred antihypertensive drugs for HA patients with hypertension.
10.Genetic Screening of Thalassemia among the Couples of Childbearing Age in Ding'an County of Hainan Province and Its Analysis.
Zhi-Hua TU ; Jie WANG ; Jia-Jia HU ; Li-Qiang ZHAO ; Hai-Ling RAN ; An-Guo WANG ; Ye-Juan LI ; Ning MA ; Zhong WU ; Zhi ZHOU
Journal of Experimental Hematology 2019;27(5):1592-1595
OBJECTIVE:
To investigate the gene-carrying rate and genetic types of thalassemia among the couples of child-bearing age in Ding'an, Hainan province.
METHODS:
A total of 1742 couples at child bearing age in the region were screened for thalassemia by detecting the mean corpuscular hemoglobin (MCH) and mean corpuscular volume (MCV). If the sample data of either spouse of couples was tested as MCV<82 fl and /or MCH<27 pg, both samples of the couple would be further assayed by hemoglobin electrophoresis. Those samples of HbA2 2.5 % or HbA2>3.5 % were judged as positive in the preliminary screening, then subjected to genetic diagnosis of thalassemia.
RESULTS:
478 cases out of 1 742 couples of child bearing age were diagnosed as thalassemia gene mutation, and the gene-carrying rate was 13.72 %. In those carriers, 42 couples were diagnosed with the same type of thalassemia, accounting for 3.67 %. The gene-carrying rate of α-thalassemia, β-thalassemia and αβ-thalassemia was 9.56%, 3.10% and 1.06 % respectively.
CONCLUSION
The Ding'an area in Hainan Province is an area with high incidence of thalassemia, and the main genotype is α-thalassemia, showing a distribution of local characteristics. The government should make efferts to popularise the screening for thalassemia, so as to effectively prevent the birth of children with thalassemia major.
Erythrocyte Indices
;
Genetic Testing
;
Heterozygote
;
Humans
;
alpha-Thalassemia
;
beta-Thalassemia

Result Analysis
Print
Save
E-mail