1.Immunogenicity of cell-based quadrivalent influenza subunit vaccine with nano-emulsion adjuvant in different age groups of BALB/c mice
Chinese Journal of Biologicals 2025;38(03):264-271+278
Objective To evaluate the effect of cell-based quadrivalent influenza subunit vaccine(QIVc) with nano-emulsion adjuvant(NE) on the enhancement of humoral immunity in mice.Methods Three-week-old,six-week-old and 18-month-old BALB/c female mice were immunized with QIVc combined with NE(50 μL) by intramuscular injection at the hemagglutinin(HA) dose of 1.5 μg(plant·unit),for two injections with the interval of 28 d.The hemagglutination inhibition(HI) titers and IgG antibody levels in serum of mice were measured 28 d after the initial immunization and 14 d after the last immunization,and the adjuvant enhancement effects of three age groups of mice were analyzed.The adjuvant-free and PBS control groups were set up.Fourteen days after the last immunization,the mice were challenged with 10 folds of median lethal dose(LD_(50)) B/Maryland/15/2016(B-Victoria) influenza strain,and the changes of body mass and survival rate were observed for 14 consecutive days.Results Intramuscular injection of HA combined with NE induced higher levels of serum HI and IgG antibodies than intramuscular injection of HA alone,and the immune-enhancing effect was more obvious in 18-month-old mice.NE enhanced the immunogenicity of HA and the resistance of mice to the attack of B/Maryland/15/2016(B-Victoria) influenza strain.Conclusion NE can enhance the immunogenicity of influenza antigen,and the enhancement effect on elderly mice is more obvious.
2.Progress on antisense oligonucleotide in the field of antibacterial therapy
Jia LI ; Xiao-lu HAN ; Shi-yu SONG ; Jin-tao LIN ; Zhi-qiang TANG ; Zeng-ming WANG ; Liang XU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2025;60(2):337-347
With the widespread use of antibiotics, drug-resistant bacterial infections have become a significant threat to human health. Finding new antibacterial strategies that can effectively control drug-resistant bacterial infections has become an urgent task. Unlike small molecule drugs that target bacterial proteins, antisense oligonucleotide (ASO) can target genes related to bacterial resistance, pathogenesis, growth, reproduction and biofilm formation. By regulating the expression of these genes, ASO can inhibit or kill bacteria, providing a novel approach for the development of antibacterial drugs. To overcome the challenge of delivering antisense oligonucleotide into bacterial cells, various drug delivery systems have been applied in this field, including cell-penetrating peptides, lipid nanoparticles and inorganic nanoparticles, which have injected new momentum into the development of antisense oligonucleotide in the antibacterial realm. This review summarizes the current development of small nucleic acid drugs, the antibacterial mechanisms, targets, sequences and delivery vectors of antisense oligonucleotide, providing a reference for the research and development of antisense oligonucleotide in the treatment of bacterial infections.
3.Preparation of new hydrogels and their synergistic effects of immunochemotherapy
Wen-wen YAN ; Yan-long ZHANG ; Ming-hui CAO ; Zheng-han LIU ; Hong LEI ; Xiang-qian JIA
Acta Pharmaceutica Sinica 2025;60(2):479-487
In recent years, cancer treatment methods and means are becoming more and more diversified, and single treatment methods often have limited efficacy, while the synergistic effect of immunity combined with chemotherapy can inhibit tumor growth more effectively. Based on this, we constructed a sodium alginate hydrogel composite system loaded with chemotherapeutic agents and tumor vaccines (named SA-DOX-NA) with a view to the combined use of chemotherapeutic agents and tumor vaccines. Firstly, the tumor vaccine (named NA) degradable under acidic conditions was constructed by
4.Effective-compounds of Jinshui Huanxian formula ameliorates pulmonary fibrosis by inhibiting lipid droplet catabolism and thus macrophage M2 polarization
Wen-bo SHAO ; Jia-ping ZHENG ; Peng ZHAO ; Qin ZHANG
Acta Pharmaceutica Sinica 2025;60(2):369-378
This study aims to investigate the effects and mechanisms of the effective-compounds of Jinshui Huanxian formula (ECC-JHF) in improving pulmonary fibrosis. Animal experiments were approved by the Ethics Committee of the Animal Experiment Center of Henan University of Chinese Medicine (approval number: IACUC-202306012). The mouse model of pulmonary fibrosis was induced using bleomycin (BLM). Hematoxylin-eosin (H&E) staining was used to detect the histopathological changes of lung tissues. Masson staining was used to assess the degree of fibrosis in lung tissues. Immunofluorescence (IF) and real-time quantitative PCR (qPCR) were performed to measure the expression of collagen type I (
5.Correlation Between Neutrophil to Lymphocyte Ratio and eGFR in Diabetic Patients: A Cross-sectional Analysis Based on NHANES Data
Chunyu JIA ; Gangan WANG ; Jiahui WANG ; Gang CHEN ; Ke ZHENG ; Xuemei LI
Medical Journal of Peking Union Medical College Hospital 2025;16(2):379-385
To investigate the association between neutrophil to lymphocyte ratio (NLR) andestimated glomerular filtration rate (eGFR) in patients with diabetes using large-scale data. Across-sectional analysis was conducted using data from diabetic patients in the National Health and Nutrition Examination Survey database from 2009 to 2014. Differences in NLR between patients with and without chronickidney disease (CKD) were compared. Pearson correlation analysis and multiple linear regression models wereapplied to assess the relationship between NLR and eGFR. A total of 857 diabetic patients were included, with 190 (22.2%) having CKD and 667 (77.8%) without CKD. NLR was significantly higher in patients with CKD compared to those without CKD (2.94±1.69 vs.2.36±1.98, NLR is independently negatively associatedwith eGFR in diabetic patients, demonstrating potential clinical value as an indicator of kidney function declineand CKD risk in this population.
6.Visual analysis of treatment of adolescent idiopathic scoliosis
Xiaodong ZHENG ; Shan GAO ; Wenjin HAN ; Lijun LIU ; Menglong JIA ; Longtan YU
Chinese Journal of Tissue Engineering Research 2025;29(3):645-653
BACKGROUND:At present,the incidence of scoliosis is increasing year by year,especially in adolescent idiopathic scoliosis.Therefore,it is more and more important to strengthen the research on the treatment of adolescent scoliosis. OBJECTIVE:To summarize the current status,hotspots,emerging trends,and frontiers of global research on the treatment of adolescent idiopathic scoliosis to provide reference and guidance for future related research. METHODS:The literature related to the treatment of adolescent idiopathic scoliosis was retrieved on the Web of Science Core Collection(WOSCC)database from 2013 to 2023.CiteSpace 6.2.R1 software was used for visual analysis of countries,institutions,authors,and keywords. RESULTS AND CONCLUSION:(1)A total of 561 English articles were included in this study.Among countries,institutions,and authors,the United States has contributed the most.Nanjing University and Qiu,Yong(Affiliated Drum Tower Hospital,Nanjing University School of Medicine)are the most published institution and author.The academic journal with the largest number of articles is the European Spine Journal.(2)In the analysis of cited literature,the top 10 most cited articles mainly describe the effects of surgical treatment and conservative treatment on improving adolescent idiopathic scoliosis,especially improving the curvature of patients.(3)Through the summary of highly cited articles and the keyword clustering,keyword prominence in-depth mining,the research hotspots are currently the relationship between Cobb angle and treatment choice,the therapeutic effect of exercise therapy and the therapeutic effect of posterior vertebral fusion.(4)The prognosis of patients with different curvatures has not been studied in depth,and the etiology of adolescent idiopathic scoliosis has not been clarified,so the relationship between curvature and prognosis and the etiology of adolescent idiopathic scoliosis may be a new research trend in the future.
7.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
8.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
9.The Role of Mitochondrial Quality Control in Glycolipid Metabolism and Metabolic Diseases
Jia-Jia FENG ; Meng GUO ; Zheng OUYANG ; Bin LÜ
Progress in Biochemistry and Biophysics 2025;52(7):1673-1686
The liver, skeletal muscle, and adipose tissue are central energy-metabolizing organs and insulin-sensitive tissues, playing a crucial role in maintaining glucose homeostasis. As the powerhouse of the cell, mitochondria not only regulate insulin secretion but also oversee the oxidative phosphorylation and β-oxidation of fatty acids, processes vital for the metabolism of carbohydrates and fats, as well as the synthesis of ATP. The mitochondrial quality control system is of paramount importance for sustaining mitochondrial homeostasis, achieved through mechanisms such as protein homeostasis, mitochondrial dynamics, mitophagy, and biogenesis. Evidence suggests that dysfunctional mitochondria may significantly contribute to insulin resistance and ectopic fat storage in the liver, offering new insights into the strong correlation between mitochondrial dysfunction and the development of obesity, diabetes mellitus type 2 (T2DM), and non-alcoholic fatty liver disease (NAFLD). This manuscript aims to delve into the precise mechanisms by which imbalances in mitochondrial quality control lead to metabolic disorders in the liver, skeletal muscle, and adipose tissue, the 3 major insulin-sensitive organs. In the liver, mitochondrial dysfunction can lead to disturbances in glucose and lipid metabolism, resulting in insulin resistance and fat accumulation—a key factor in the development of NAFLD. In skeletal muscle, reduced mitochondrial function can decrease ATP production, weakening the muscle’s ability to uptake glucose, thereby exacerbating insulin resistance. In adipose tissue, mitochondrial dysfunction can impair adipocyte function, leading to lipotoxicity and inflammatory responses,which further contribute to insulin resistance and the onset of metabolic syndrome. Moreover, the interorgan crosstalk among these 3 tissues is essential for overall metabolic homeostasis. For instance, hepatic gluconeogenesis and glucose utilization in skeletal muscle are both influenced by the health status of their respective mitochondrial populations. The conversion between different types of adipose tissue and the ability to store lipids depend on normal mitochondrial function to avert ectopic fat accumulation in other organs. In summary, this manuscript emphasizes the critical role of mitochondrial quality control in maintaining the metabolic stability of the liver, skeletal muscle, and adipose tissue. It elucidates the specific mechanisms by which mitochondrial dysfunction in these organs contributes to the development of metabolic diseases, providing a foundation for future research and the development of therapeutic strategies targeting mitochondrial dysfunction.
10.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.


Result Analysis
Print
Save
E-mail