1.Hydrogen sulfide ameliorates hypoxic pulmonary hypertension in rats by inhibiting aerobic glycolysis-pyroptosis.
Yuan CHENG ; Yun-Na TIAN ; Man HUANG ; Jun-Peng XU ; Wen-Jie CAO ; Xu-Guang JIA ; Li-Yi YOU ; Wan-Tie WANG
Acta Physiologica Sinica 2025;77(3):465-471
The present study aimed to explore whether hydrogen sulfide (H2S) improved hypoxic pulmonary hypertension (HPH) in rats by inhibiting aerobic glycolysis-pyroptosis. Male Sprague-Dawley (SD) rats were randomly divided into normal group, normal+NaHS group, hypoxia group, and hypoxia+NaHS group, with 6 rats in each group. The control group rats were placed in a normoxic (21% O2) environment and received daily intraperitoneal injections of an equal volume of normal saline. The normal+NaHS group rats were placed in a normoxic environment and intraperitoneally injected with 14 μmol/kg NaHS daily. The hypoxia group rats were placed in a hypoxia chamber, and the oxygen controller inside the chamber maintained the oxygen concentration at 9% to 10% by controlling the N2 flow rate. An equal volume of normal saline was injected intraperitoneally every day. The hypoxia+NaHS group rats were also placed in an hypoxia chamber and intraperitoneally injected with 14 μmol/kg NaHS daily. After the completion of the four-week modeling, the mean pulmonary artery pressure (mPAP) of each group was measured using right heart catheterization technique, and the right ventricular hypertrophy index (RVHI) was weighed and calculated. HE staining was used to observe pathological changes in lung tissue, Masson staining was used to observe fibrosis of lung tissue, and Western blot was used to detect protein expression levels of hexokinase 2 (HK2), pyruvate dehydrogenase (PDH), pyruvate kinase isozyme type M2 (PKM2), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), GSDMD-N-terminal domain (GSDMD-N), Caspase-1, interleukin-1β (IL-1β) and IL-18 in lung tissue. ELISA was used to detect contents of IL-1β and IL-18 in lung tissue. The results showed that, compared with the normal control group, there were no significant changes in all indexes in the normal+NaHS group, while the hypoxia group exhibited significantly increased mPAP and RVHI, thickened pulmonary vascular wall, narrowed lumen, increased collagen fibers, up-regulated expression levels of aerobic glycolysis-related proteins (HK2 and PKM2), up-regulated expression levels of pyroptosis-related proteins (NLRP3, GSDMD-N, Caspase-1, IL-1β, and IL-18), and increased contents of IL-1β and IL-18. These changes of the above indexes in the hypoxia group were significantly reversed by NaHS. These results suggest that H2S can improve rat HPH by inhibiting aerobic glycolysis-pyroptosis.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Hypertension, Pulmonary/metabolism*
;
Glycolysis/drug effects*
;
Hydrogen Sulfide/therapeutic use*
;
Hypoxia/complications*
;
Rats
;
Pyroptosis/drug effects*
2.Mechanism of Huanglian Jiedu Decoction in treatment of type 2 diabetes mellitus based on intestinal flora.
Xue HAN ; Qiu-Mei TANG ; Wei WANG ; Guang-Yong YANG ; Wei-Yi TIAN ; Wen-Jia WANG ; Ping WANG ; Xiao-Hua TU ; Guang-Zhi HE
China Journal of Chinese Materia Medica 2025;50(1):197-208
The effect of Huanglian Jiedu Decoction on the intestinal flora of type 2 diabetes mellitus(T2DM) was investigated using 16S rRNA sequencing technology. Sixty rats were randomly divided into a normal group(10 rats) and a modeling group(50 rats). After one week of adaptive feeding, a high-fat diet + streptozotocin was given for modeling, and fasting blood glucose >16.7 mmol·L~(-1) was considered a sign of successful modeling. The modeling group was randomly divided into the model group, high-, medium-, and low-dose groups of Huanglian Jiedu Decoction, and metformin group. After seven days of intragastric treatment, the feces, colon, and pancreatic tissue of each group of rats were collected, and the pathological changes of the colon and pancreatic tissue of each group were observed by hematoxylin-eosin staining. The changes in the intestinal flora structure of each group were observed by the 16S rRNA sequencing method. The results showed that compared with the model group, the high-, medium-, and low-dose of Huanglian Jiedu Decoction reduced fasting blood glucose levels to different degrees and showed no significant changes in body weight. The number of islet cells increased, and intestinal mucosal damage attenuated. Alpha diversity analysis revealed that Huanglian Jiedu Decoction reduced the abundance and diversity of intestinal flora in rats with T2DM; at the phylum level, low-and mediam-dose of Huanglian Jiedu Decoction reduced the abundance of Bacteroidota, Proteobacteria, and Desulfobacterota and increased the abundance of Firmicute and Bacteroidota/Firmicutes, while the high-dose of Huanglian Jiedu Decoction increased the relative abundance of Proteobacteria and Bacteroidota/Firmicutes ratio, and decreaseal the relative; abundance of Firmicute; at the genus level, Huanglian Jiedu Decoction increased the relative abundance of Allobaculum, Blautia, and Lactobacillus; LEfse analysis revealed that the biomarker of low-and medium-dose groups of Huanglian Jiedu Decoction was Lactobacillus, and the structure of the intestinal flora of the low-dose group of Huanglian Jiedu Decoction was highly similar to that of the metformin group. PICRUSt2 function prediction revealed that Huanglian Jiedu Decoction mainly affected carbohydrate and amino acid metabolic pathways. It suggested that Huanglian Jiedu Decoction could reduce fasting blood glucose and increase the number of islet cells in rats with T2DM, and its mechanism of action may be related to increasing the abundance of short-chain fatty acid-producing strains and Lactobacillus and affecting carbohydrate and amino acid metabolic pathways.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Diabetes Mellitus, Type 2/metabolism*
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Humans
;
Bacteria/drug effects*
;
Blood Glucose/metabolism*
3.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats
4.Effect and mechanism of Buyang Huanwu Decoction in improving neurological function in ischemic stroke rats based on IRE1α/ASK1/JNK pathway.
Xin-Rong ZHANG ; Tian-Lang WANG ; Jia-Hao ZHANG ; Lu JIN ; Jian-Bo WANG ; Ya-Nan XUE ; Yi QU
China Journal of Chinese Materia Medica 2025;50(14):3857-3867
This study aimed to investigate the effect and mechanism of Buyang Huanwu Decoction in regulating endoplasmic reticulum stress via the inositol-requiring enzyme 1α(IRE1α)/apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase(JNK) pathway to improve neurological function in rats with cerebral ischemia/reperfusion injury(CIRI). SPF-grade male sprague-dawley(SD) rats were randomly divided into Sham group, model group, Buyang Huanwu Decoction group, and edaravone group. Except for the Sham group, the other groups were subjected to the modified suture method to establish a middle cerebral artery occlusion/reperfusion(MCAO/R) model. After treatment, neurological function was assessed using the Zea Longa scoring system. Gait analysis was used to detect the motor function. Detection of relative infarct area in brain tissue using 2,3,5-triphenyltetrazolium chloride(TTC) staining. Nissl staining was used to observe the structure of neuronal cells. Western blot and real-time fluorescence quantitative PCR(RT-qPCR) were used to detect IRE1α, ASK1, JNK, B cell lymphoma-2(Bcl-2), Bcl-2 related X protein(Bax), and Caspase-3 in the brain tissue. Immunohistochemistry was used to detect the positive expression of IRE1α, ASK1, and JNK. Immunofluorescence was used to detect the fluorescence expression levels of Bax, Bcl-2, and Caspase-3. The results showed that compared with the Sham group, the model group exhibited increased neurological scores(P<0.01), increased ratio of ground contact area and strength in both forelimbs(P<0.01), enlarged relative infarct area of brain tissue(P<0.05), and a reduced number of Nissl staining-positive cells(P<0.01). The protein and mRNA expression levels of IRE1α, ASK1, JNK, Bax, and Caspase-3 in brain tissue were significantly elevated, while those of Bcl-2 were decreased(P<0.05). Compared with the model group, both the Buyang Huanwu Decoction group and edaravone group showed reduced neurological scores(P<0.05), decreased ratio of ground contact area and strength in both forelimbs(P<0.05), smaller relative infarct area(P<0.05), alleviated neuronal damage, and increased number of Nissl staining-positive cells(P<0.05). The expression levels of IRE1α, ASK1, JNK, Bax, and Caspase-3 protein and mRNA in brain tissue were significantly reduced, while those of Bcl-2 were significantly increased(P<0.05). The results indicated that Buyang Huanwu Decoction can effectively improve brain injury in CIRI rats, and its mechanism of action may be related to regulating the endoplasmic reticulum stress IRE1α/ASK1/JNK signaling pathway.
Animals
;
Male
;
Rats, Sprague-Dawley
;
Protein Serine-Threonine Kinases/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
MAP Kinase Kinase Kinase 5/genetics*
;
Ischemic Stroke/physiopathology*
;
Humans
;
MAP Kinase Signaling System/drug effects*
;
Apoptosis/drug effects*
;
Endoribonucleases/genetics*
;
JNK Mitogen-Activated Protein Kinases/genetics*
;
Endoplasmic Reticulum Stress/drug effects*
;
Multienzyme Complexes
5.Application of genome tagging technology in elucidating the function of sperm-specific protein 411 (Ssp411).
Xue-Hai ZHOU ; Min-Min HUA ; Jia-Nan TANG ; Bang-Guo WU ; Xue-Mei WANG ; Chang-Gen SHI ; Yang YANG ; Jun WU ; Bin WU ; Bao-Li ZHANG ; Yi-Si SUN ; Tian-Cheng ZHANG ; Hui-Juan SHI
Asian Journal of Andrology 2025;27(1):120-128
The genome tagging project (GTP) plays a pivotal role in addressing a critical gap in the understanding of protein functions. Within this framework, we successfully generated a human influenza hemagglutinin-tagged sperm-specific protein 411 (HA-tagged Ssp411) mouse model. This model is instrumental in probing the expression and function of Ssp411. Our research revealed that Ssp411 is expressed in the round spermatids, elongating spermatids, elongated spermatids, and epididymal spermatozoa. The comprehensive examination of the distribution of Ssp411 in these germ cells offers new perspectives on its involvement in spermiogenesis. Nevertheless, rigorous further inquiry is imperative to elucidate the precise mechanistic underpinnings of these functions. Ssp411 is not detectable in metaphase II (MII) oocytes, zygotes, or 2-cell stage embryos, highlighting its intricate role in early embryonic development. These findings not only advance our understanding of the role of Ssp411 in reproductive physiology but also significantly contribute to the overarching goals of the GTP, fostering groundbreaking advancements in the fields of spermiogenesis and reproductive biology.
Animals
;
Female
;
Humans
;
Male
;
Mice
;
Spermatids/metabolism*
;
Spermatogenesis/physiology*
;
Spermatozoa/metabolism*
;
Thioredoxins/genetics*
6.Novel biallelic HFM1 variants cause severe oligozoospermia with favorable intracytoplasmic sperm injection outcome.
Liu LIU ; Yi-Ling ZHOU ; Wei-Dong TIAN ; Feng JIANG ; Jia-Xiong WANG ; Feng ZHANG ; Chun-Yu LIU ; Hong ZHU
Asian Journal of Andrology 2025;27(6):751-756
Male factors contribute to 50% of infertility cases, with 20%-30% of cases being solely attributed to male infertility. Helicase for meiosis 1 ( HFM1 ) plays a crucial role in ensuring proper crossover formation and synapsis of homologous chromosomes during meiosis, an essential process in gametogenesis. HFM1 gene mutations are associated with male infertility, particularly in cases of non-obstructive azoospermia and severe oligozoospermia. However, the effects of intracytoplasmic sperm injection (ICSI) in HFM1 -related infertility cases remain inadequately explored. This study identified novel biallelic HFM1 variants through whole-exome sequencing (WES) in a Chinese patient with severe oligozoospermia, which was confirmed by Sanger sequencing. The pathogenicity of these variants was assessed using real-time quantitative polymerase chain reaction (RT-qPCR) and immunoblotting, which revealed a significant reduction in HFM1 mRNA and protein levels in spermatozoa compared to those in a healthy control. Transmission electron microscopy revealed morphological abnormalities in sperm cells, including defects in the head and flagellum. Despite these abnormalities, ICSI treatment resulted in a favorable fertility outcome for the patient, indicating that assisted reproductive techniques (ART) can be effective in managing HFM1 -related male infertility. These findings offer valuable insights into the management of such cases.
Humans
;
Male
;
Sperm Injections, Intracytoplasmic
;
Oligospermia/therapy*
;
Adult
;
Spermatozoa/ultrastructure*
;
Exome Sequencing
;
Mutation
7.Explanation and interpretation of blood transfusion provisions for children with hematological diseases in the national health standard "Guideline for pediatric transfusion".
Ming-Yi ZHAO ; Rong HUANG ; Rong GUI ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(1):18-25
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion is one of the most commonly used supportive treatments for children with hematological diseases. This guideline provides guidance and recommendations for blood transfusions in children with aplastic anemia, thalassemia, autoimmune hemolytic anemia, glucose-6-phosphate dehydrogenase deficiency, acute leukemia, myelodysplastic syndromes, immune thrombocytopenic purpura, and thrombotic thrombocytopenic purpura. This article presents the evidence and interpretation of the blood transfusion provisions for children with hematological diseases in the "Guideline for pediatric transfusion", aiming to assist in the understanding and implementing the blood transfusion section of this guideline.
Humans
;
Child
;
Hematologic Diseases/therapy*
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
8.Explanation and interpretation of the compilation of blood transfusion provisions for children undergoing hematopoietic stem cell transplantation in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(2):139-143
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion for children undergoing hematopoietic stem cell transplantation is highly complex and challenging. This guideline provides recommendations on transfusion thresholds and the selection of blood components for these children. This article presents the evidence and interpretation of the transfusion provisions for children undergoing hematopoietic stem cell transplantation, with the aim of enhancing the understanding and implementation of the "Guideline for pediatric transfusion".
Humans
;
Hematopoietic Stem Cell Transplantation
;
Child
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
9.Explanation and interpretation of blood transfusion provisions for critically ill and severely bleeding pediatric patients in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI
Chinese Journal of Contemporary Pediatrics 2025;27(4):395-403
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Critically ill children often present with anemia and have a higher demand for transfusions compared to other pediatric patients. This guideline provides guidance and recommendations for blood transfusions in cases of general critical illness, septic shock, acute brain injury, extracorporeal membrane oxygenation, non-life-threatening bleeding, and hemorrhagic shock. This article interprets the background and evidence of the blood transfusion provisions for critically ill and severely bleeding children in the "Guideline for pediatric transfusion", aiming to enhance understanding and implementation of this aspect of the guidelines. Citation:Chinese Journal of Contemporary Pediatrics, 2025, 27(4): 395-403.
Humans
;
Critical Illness
;
Blood Transfusion/standards*
;
Child
;
Hemorrhage/therapy*
;
Practice Guidelines as Topic
10.Explanation and interpretation of blood transfusion provisions for children undergoing cardiac surgery in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Jin-Ping LIU
Chinese Journal of Contemporary Pediatrics 2025;27(7):778-785
To guide clinical blood transfusion practices in pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Children undergoing cardiac surgery are at high risk of bleeding, and the causes of perioperative anemia and coagulation disorders in neonates and children are complex and varied, often necessitating the transfusion of allogeneic blood components. This guideline provides direction and recommendations for specific measures in blood management for children undergoing cardiac surgery before, during, and after surgery. This article interprets the background and evidence for the formulation of the blood transfusion provisions for children undergoing cardiac surgery, hoping to facilitate the understanding and implementation of this guideline.
Humans
;
Cardiac Surgical Procedures
;
Blood Transfusion/standards*
;
Child
;
Practice Guidelines as Topic

Result Analysis
Print
Save
E-mail