1.Study on The Promotion of Tenocyte Proliferation and Differentiation by Oriented Fiber Membrane Loaded With Nano-zinc Oxide
Jia FAN ; Peng-Cheng GU ; Xi-Ting CHENG ; Qiang JIANG ; Ya ZHAO ; Xiao-Fang PAN ; Yan BAI
Progress in Biochemistry and Biophysics 2024;51(8):1895-1903
ObjectiveTo simulate the microstructure and mechanical properties of tendon tissue and promote its regeneration and repair, electrospinning technology was used to prepare L-polylactic acid (PLLA) fiber membranes loaded with different nano zinc oxide contents and with oriented structures. Physical and chemical characterization and biological performance evaluation were carried out to explore their effects on tendon cell proliferation and differentiation. MethodsPreparation of PLLA fiber scaffolds and PLLA/ZnO fiber scaffolds containing different mass fractions of nano ZnO was performed using electrospinning technology. The physicochemical properties of the scaffold were characterized by scanning electron microscopy, mechanical stretching, and EDS spectroscopy. The scaffold was co-cultured with mouse tendon cells to detect its biocompatibility and regulatory effects on cell differentiation behavior. ResultsThe fiber scaffolds were arranged in an oriented manner, and zinc elements were uniformly distributed in the fibers. The tensile strength and Young’s modulus of PLLA/0.1%ZnO fiber scaffolds were significantly higher than PLLA fiber scaffolds. The number of cells on the surface of PLLA/0.1%ZnO fiber scaffold was significantly higher than that of the PLLA group, and the activity was better; mouse tendon cells exhibit directional adhesion and growth along the fiber arrangement direction. ConclusionThe oriented PLLA/0.1%ZnO fiber scaffold had excellent physicochemical properties, which can significantly promote the oriented growth, proliferation and differentiation of tendon cells. It is expected to be used for tendon tissue regeneration and repair in the future.
2.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
3.Surveillance of antifungal resistance in clinical isolates of Candida spp.in East China Invasive Fungal Infection Group from 2018 to 2022
Dongjiang WANG ; Wenjuan WU ; Jian GUO ; Min ZHANG ; Huiping LIN ; Feifei WAN ; Xiaobo MA ; Yueting LI ; Jia LI ; Huiqiong JIA ; Lingbing ZENG ; Xiuhai LU ; Yan JIN ; Jinfeng CAI ; Wei LI ; Zhimin BAI ; Yongqin WU ; Hui DING ; Zhongxian LIAO ; Gen LI ; Hui ZHANG ; Hongwei MENG ; Changzi DENG ; Feng CHEN ; Na JIANG ; Jie QIN ; Guoping DONG ; Jinghua ZHANG ; Wei XI ; Haomin ZHANG ; Rong TANG ; Li LI ; Suzhen WANG ; Fen PAN ; Jing GAO ; Lu JIANG ; Hua FANG ; Zhilan LI ; Yiqun YUAN ; Guoqing WANG ; Yuanxia WANG ; Liping WANG
Chinese Journal of Infection and Chemotherapy 2024;24(4):402-409
Objective To monitor the antifungal resistance of clinical isolates of Candida spp.in the East China region.Methods MALDI-TOF MS or molecular methods were used to re-identify the strains collected from January 2018 to December 2022.Antifungal susceptibility testing was performed using the broth microdilution method.The susceptibility test results were interpreted according to the breakpoints of 2022 Clinical and Laboratory Standards Institute(CLSI)documents M27 M44s-Ed3 and M57s-Ed4.Results A total of 3 026 strains of Candida were collected,65.33%of which were isolated from sterile body sites,mainly from blood(38.86%)and pleural effusion/ascites(10.21%).The predominant species of Candida were Candida albicans(44.51%),followed by Candida parapsilosis complex(19.46%),Candida tropicalis(13.98%),Candida glabrata(10.34%),and other Candida species(0.79%).Candida albicans showed overall high susceptibility rates to the 10 antifungal drugs tested(the lowest rate being 93.62%).Only 2.97%of the strains showed dose-dependent susceptibility(SDD)to fluconazole.Candida parapsilosis complex had a SDD rate of 2.61%and a resistance rate of 9.42%to fluconazole,and susceptibility rates above 90%to other drugs.Candida glabrata had a SDD rate of 92.01%and a resistance rate of 7.99%to fluconazole,resistance rates of 32.27%and 48.24%to posaconazole and voriconazole non-wild-type strains(NWT),respectively,and susceptibility rates above 90%to other drugs.Candida tropicalis had resistance rates of 29.55%and 26.24%to fluconazole and voriconazole,respectively,resistance rates of 76.60%and 21.99%to posaconazole and echinocandins non-wild-type strains(NWT),and a resistance rate of 2.36%to echinocandins.Conclusions The prevalence and species distribution of Candida spp.in the East China region are consistent with previous domestic and international reports.Candida glabrata exhibits certain degree of resistance to fluconazole,while Candida tropicalis demonstrates higher resistance to triazole drugs.Additionally,echinocandins resistance has emerged in Candida albicans,Candida glabrata,Candida tropicalis,and Candida parapsilosis.
4.Comparison of Jinzhen oral liquid and ambroxol hydrochloride and clenbuterol hydrochloride oral solution in the treatment of acute bronchitis in children: A multicenter, non-inferiority, prospective, randomized controlled trial.
Qinhua FAN ; Chongming WU ; Yawei DU ; Boyang WANG ; Yanming XIE ; Zeling ZHANG ; Wenquan SU ; Zizhuo WANG ; Changchang XU ; Xueke LI ; Ying DING ; Xinjiang AN ; Jing CHEN ; Yunying XIAO ; Rong YU ; Nan LI ; Juan WANG ; Yiqun TENG ; Hongfen LV ; Nian YANG ; Yuling WEN ; Xiaoli HUANG ; Wei PAN ; Yufeng LIU ; Xueqin XI ; Qianye ZHAO ; Changshan LIU ; Jian XU ; Haitao ZHANG ; Lie ZHUO ; Qiangquan RONG ; Yu XIA ; Qin SHEN ; Shao LI ; Junhong WANG ; Shengxian WU
Acta Pharmaceutica Sinica B 2024;14(12):5186-5200
The comparison between traditional Chinese medicine Jinzhen oral liquid (JZOL) and Western medicine in treating children with acute bronchitis (AB) showed encouraging outcomes. This trial evaluated the efficacy and safety of the JZOL for improving cough and expectoration in children with AB. 480 children were randomly assigned to take JZOL or ambroxol hydrochloride and clenbuterol hydrochloride oral solution for 7 days. The primary outcome was time-to-cough resolution. The median time-to-cough resolution in both groups was 5.0 days and the antitussive onset median time was only 1 day. This randomized controlled trial showed that JZOL was not inferior to cough suppressant and phlegm resolving western medicine in treating cough and sputum and could comprehensively treat respiratory and systemic discomfort symptoms. Combined with clinical trials, the mechanism of JZOL against AB was uncovered by network target analysis, it was found that the pathways in TRP channels like IL-1β/IL1R/TRPV1/TRPA1, NGF/TrkA/TRPV1/TRPA1, and PGE2/EP/PKA/TRPV1/TRPA1 might play important roles. Animal experiments further confirmed that inflammation and the immune regulatory effect of JZOL in the treatment of AB were of vital importance and TRP channels were the key mechanism of action.
5.High-throughput screening of SARS-CoV-2 main and papain-like protease inhibitors.
Yi ZANG ; Mingbo SU ; Qingxing WANG ; Xi CHENG ; Wenru ZHANG ; Yao ZHAO ; Tong CHEN ; Yingyan JIANG ; Qiang SHEN ; Juan DU ; Qiuxiang TAN ; Peipei WANG ; Lixin GAO ; Zhenming JIN ; Mengmeng ZHANG ; Cong LI ; Ya ZHU ; Bo FENG ; Bixi TANG ; Han XIE ; Ming-Wei WANG ; Mingyue ZHENG ; Xiaoyan PAN ; Haitao YANG ; Yechun XU ; Beili WU ; Leike ZHANG ; Zihe RAO ; Xiuna YANG ; Hualiang JIANG ; Gengfu XIAO ; Qiang ZHAO ; Jia LI
Protein & Cell 2023;14(1):17-27
The global COVID-19 coronavirus pandemic has infected over 109 million people, leading to over 2 million deaths up to date and still lacking of effective drugs for patient treatment. Here, we screened about 1.8 million small molecules against the main protease (Mpro) and papain like protease (PLpro), two major proteases in severe acute respiratory syndrome-coronavirus 2 genome, and identified 1851Mpro inhibitors and 205 PLpro inhibitors with low nmol/l activity of the best hits. Among these inhibitors, eight small molecules showed dual inhibition effects on both Mpro and PLpro, exhibiting potential as better candidates for COVID-19 treatment. The best inhibitors of each protease were tested in antiviral assay, with over 40% of Mpro inhibitors and over 20% of PLpro inhibitors showing high potency in viral inhibition with low cytotoxicity. The X-ray crystal structure of SARS-CoV-2 Mpro in complex with its potent inhibitor 4a was determined at 1.8 Å resolution. Together with docking assays, our results provide a comprehensive resource for future research on anti-SARS-CoV-2 drug development.
Humans
;
Antiviral Agents/chemistry*
;
COVID-19
;
COVID-19 Drug Treatment
;
High-Throughput Screening Assays
;
Molecular Docking Simulation
;
Protease Inhibitors/chemistry*
;
SARS-CoV-2/enzymology*
;
Viral Nonstructural Proteins
6.Mechanism of Didang Decoction in prevention of anti-atherosclerosis and hyperlipidemia by HPLC-Q-TOF-MS/MS and network pharmacology based on theory of "nutrients return to heart and fat accumulates in channels".
Xi-Ze WU ; Jian KANG ; Yue LI ; Jia-Xiang PAN
China Journal of Chinese Materia Medica 2023;48(5):1352-1369
Atherosclerosis(AS) is caused by impaired lipid metabolism, which deposits lipids in the intima, causes vascular fibrosis and calcification, and then leads to stiffening of the vascular wall. Hyperlipidemia(HLP) is one of the key risk factors for AS. Based on the theory of "nutrients return to the heart and fat accumulates in the channels", it is believed that the excess fat returning to the heart in the vessels is the key pathogenic factor of AS. The accumulation of fat in the vessels over time and the blood stasis are the pathological mechanisms leading to the development of HLP and AS, and "turbid phlegm and fat" and "blood stasis" are the pathological products of the progression of HLP into AS. Didang Decoction(DDD) is a potent prescription effective in activating blood circulation, removing blood stasis, resolving turbidity, lowering lipids, and dredging blood vessels, with the functions of dispelling stasis to promote regeneration, which has certain effects in the treatment of atherosclerotic diseases. This study employed high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(HPLC-Q-TOF-MS/MS) to screen the main blood components of DDD, explored the targets and mechanisms of DDD against AS and HLP with network pharmacology, and verified the network pharmacological results by in vitro experiments. A total of 231 blood components of DDD were obtained, including 157 compounds with a composite score >60. There were 903 predicted targets obtained from SwissTargetPrediction and 279 disease targets from GeneCards, OMIM, and DisGeNET, and 79 potential target genes of DDD against AS and HLP were obtained by intersection. Gene Ontology(GO) analysis suggested that DDD presumably exerted regulation through biological processes such as cholesterol metabolism and inflammatory response, and Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis suggested that signaling pathways included lipid and atherosclerosis, insulin resistance, chemo-carcinogenesis-receptor activation, and AGE-RAGE signaling pathways in diabetic complications. In vitro experiments showed that DDD could reduce free fatty acid-induced lipid accumulation and cholesterol ester content in L02 cells and improve cellular activity, which might be related to the up-regulation of the expression of PPARα, LPL, PPARG, VEGFA, CETP, CYP1A1, and CYP3A4, and the down-regulation of the expression of TNF-α and IL-6. DDD may play a role in preventing and treating AS and HLP by improving lipid metabolism and inflammatory response, and inhibiting apoptosis with multi-component, multi-target, and multi-pathway characteristics.
Humans
;
Hyperlipidemias/drug therapy*
;
Tandem Mass Spectrometry
;
Chromatography, High Pressure Liquid
;
Network Pharmacology
;
Nutrients
;
Atherosclerosis/prevention & control*
;
Lipids
;
Drugs, Chinese Herbal/pharmacology*
;
Molecular Docking Simulation
7.Species identification of Ligustrum lucidum.
Yu-Shuang WANG ; Yuan-Xi JIN ; Kang-Jia LIU ; Chang GUO ; Yi-Heng WANG ; Chao XU ; Zhi-Xiang ZHANG ; Wen-Pan DONG
China Journal of Chinese Materia Medica 2023;48(11):2940-2948
Ligustrum lucidum is a woody perennial plant of genus Ligustrum in family Oleaceae. Its dried fruit has high medicinal value. In this study, the authors evaluated the variability and species identification efficiency of three specific DAN barcodes(rbcL-accD, ycf1a, ycf1b) and four general DAN barcodes(matK, rbcL, trnH-psbA, ITS2) for a rapid and accurate molecular identification of Ligustrum species. The results revealed that matK, rbcL, trnH-psbA, ITS2 and ycf1a were inefficient for identifying the Ligustrum species, and a large number of insertions and deletions were observed in rbcL-accD sequence, which was thus unsuitable for development as specific barcode. The ycf1b-2 barcode had DNA barcoding gap and high success rate of PCR amplification and DNA sequencing, which was the most suitable DNA barcode for L. lucidum identification and achieved an accurate result. In addition, to optimize the DNA extraction experiment, the authors extracted and analyzed the DNA of the exocarp, mesocarp, endocarp and seed of L. lucidum fruit. It was found that seed was the most effective part for DNA extraction, where DNAs of high concentration and quality were obtained, meeting the needs of species identification. In this study, the experimental method for DNA extraction of L. lucidum was optimized, and the seed was determined as the optimal part for DNA extraction and ycf1b-2 was the specific DNA barcode for L. lucidum identification. This study laid a foundation for the market regulation of L. lucidum.
Ligustrum/genetics*
;
Seeds
;
Fruit
;
Polymerase Chain Reaction
;
Research Design
8. Research progress on potential therapeutic targets of chronic cough
Jia LIU ; Yong-Ping ZHANG ; Xiao-Bo SUN ; Jia LIU ; Yun LUO ; Yun-Feng PAN ; Xi DONG ; Xiao-Bo SUN
Chinese Pharmacological Bulletin 2023;39(8):1426-1429
Chronic cough is caused by low levels of heat, mechanical or chemical exposure, which is characterized by the disorders of channels and receptors in neuroregulation such as the peripheral and central nerves. Potential regulatory targets of peripheral nerves include P2X3 receptors and transient receptor potential channels, while potential regulatory targets of central nerves include voltage-gated sodium channels, neurokinin-1 receptors, α-7acetylcholine receptors and gamma aminobutyric acid receptors. This paper focuses on the principle and clinical research evidence of several ongoing targeted therapy strategies, in order to provide new ideas for the development of drugs for the treatment of chronic cough.
9.The 494th case: acute pancreatitis, acute acalculous cholecystitis and anaphylaxis
Zhouxian PAN ; Lianglu WANG ; Le CUI ; Jingnan LI ; Xi WU ; Li ZHANG ; Zhiwei WANG ; Jueruizhi JIA ; Mengyi WANG ; Yunlu FENG
Chinese Journal of Internal Medicine 2022;61(5):603-606
A young male patient with abdominal pain and fever was diagnosed as acute hyper-triglyceridemicpancreatitis is clear. During the recovery of pancreatitis, the patient developed acute acalculous cholecystitis, as well as carbapenem-resistant Enterobacter infection and Cytomegaloviremia, and had anaphylaxis for several times after the use of antibiotics, which cannot be completely explained by drug allergy. This paper analyzes the possible causes of multiple diseases in the same patient in detail.
10.Mid-term efficacy of China Net Childhood Lymphoma-mature B-cell lymphoma 2017 regimen in the treatment of pediatric Burkitt lymphoma.
Meng ZHANG ; Pan WU ; Yan Long DUAN ; Ling JIN ; Jing YANG ; Shuang HUANG ; Ying LIU ; Bo HU ; Xiao Wen ZHAI ; Hong Sheng WANG ; Yang FU ; Fu LI ; Xiao Mei YANG ; An Sheng LIU ; Shuang QIN ; Xiao Jun YUAN ; Yu Shuang DONG ; Wei LIU ; Jian Wen ZHOU ; Le Ping ZHANG ; Yue Ping JIA ; Jian WANG ; Li Jun QU ; Yun Peng DAI ; Guo Tao GUAN ; Li Rong SUN ; Jian JIANG ; Rong LIU ; Run Ming JIN ; Zhu Jun WANG ; Xi Ge WANG ; Bao Xi ZHANG ; Kai Lan CHEN ; Shu Quan ZHUANG ; Jing ZHANG ; Chun Ju ZHOU ; Zi Fen GAO ; Min Cui ZHENG ; Yonghong ZHANG
Chinese Journal of Pediatrics 2022;60(10):1011-1018
Objective: To analyze the clinical characteristics of children with Burkitt lymphoma (BL) and to summarize the mid-term efficacy of China Net Childhood Lymphoma-mature B-cell lymphoma 2017 (CNCL-B-NHL-2017) regimen. Methods: Clinical features of 436 BL patients who were ≤18 years old and treated with the CNCL-B-NHL-2017 regimen from May 2017 to April 2021 were analyzed retrospectively. Clinical characteristics of patients at disease onset were analyzed and the therapeutic effects of patients with different clinical stages and risk groups were compared. Survival analysis was performed by Kaplan-Meier method, and Cox regression was used to identify the prognostic factors. Results: Among 436 patients, there were 368 (84.4%) males and 68 (15.6%) females, the age of disease onset was 6.0 (4.0, 9.0) years old. According to the St. Jude staging system, there were 4 patients (0.9%) with stage Ⅰ, 30 patients (6.9%) with stage Ⅱ, 217 patients (49.8%) with stage Ⅲ, and 185 patients (42.4%) with stage Ⅳ. All patients were stratified into following risk groups: group A (n=1, 0.2%), group B1 (n=46, 10.6%), group B2 (n=19, 4.4%), group C1 (n=285, 65.4%), group C2 (n=85, 19.5%). Sixty-three patients (14.4%) were treated with chemotherapy only and 373 patients (85.6%) were treated with chemotherapy combined with rituximab. Twenty-one patients (4.8%) suffered from progressive disease, 3 patients (0.7%) relapsed, and 13 patients (3.0%) died of treatment-related complications. The follow-up time of all patients was 24.0 (13.0, 35.0) months, the 2-year event free survival (EFS) rate of all patients was (90.9±1.4) %. The 2-year EFS rates of group A, B1, B2, C1 and C2 were 100.0%, 100.0%, (94.7±5.1) %, (90.7±1.7) % and (85.9±4.0) %, respectively. The 2-year EFS rates was higher in group A, B1, and B2 than those in group C1 (χ2=4.16, P=0.041) and group C2 (χ2=7.21, P=0.007). The 2-year EFS rates of the patients treated with chemotherapy alone and those treated with chemotherapy combined with rituximab were (79.3±5.1)% and (92.9±1.4)% (χ2=14.23, P<0.001) respectively. Multivariate analysis showed that stage Ⅳ (including leukemia stage), serum lactate dehydrogenase (LDH)>4-fold normal value, and with residual tumor in the mid-term evaluation were risk factors for poor prognosis (HR=1.38,1.23,8.52,95%CI 1.05-1.82,1.05-1.43,3.96-18.30). Conclusions: The CNCL-B-NHL-2017 regimen show significant effect in the treatment of pediatric BL. The combination of rituximab improve the efficacy further.
Adolescent
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Burkitt Lymphoma/drug therapy*
;
Child
;
Disease-Free Survival
;
Female
;
Humans
;
Lactate Dehydrogenases
;
Lymphoma, B-Cell/drug therapy*
;
Male
;
Prognosis
;
Retrospective Studies
;
Rituximab/therapeutic use*
;
Treatment Outcome

Result Analysis
Print
Save
E-mail